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Oxidative stress and the antioxidant enzyme 
system in the developing brain
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Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free 
radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen 
species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most 
common ROS are superoxide (O2•-), hydroxyl radical (OH•), and hydrogen peroxide (H2O2). Under normal 
physiological conditions, a balance is maintained between the production of ROS and the capacity of 
the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. 
Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant 
enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important 
scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively ex-
pressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant 
substances have been studied as potential therapeutic agents; however, further preclinical and clinical 
studies are required before allowing clinical application.
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Introduction

Premature infants are especially vulnerable to reactive oxygen species (ROS)-induced 
injury1) because of their insufficient ability to synthesize antioxidant enzymes and the 
resulting deficiency of antioxidant enzymes. The imbalance between ROS production 
and antioxidant defense may lead to ROS-induced diseases such as bronchopulmonary 
dysplasia (BPD), periventricular leukomalacia (PVL), or retinopathy of prematurity (ROP)2). 

Free radicals are highly reactive molecules that contain one or more unpaired electrons, 
and radicals containing oxygen are referred to as ROS3). Under normal physiological 
conditions, a balance is maintained between ROS production and the antioxidant enzyme 
system. However, if this balance breaks down, ROS oxidize lipids, proteins, and polysac-
charides and can damage DNA and RNA4,5). 

Aerobic organisms have developed antioxidant defenses. Superoxide dismutase (SOD); 
catalase; glutathione peroxidase (GPx); vitamins A, C, and E; and glutathione are com mon 
antioxidants6). Majority of the studies on the antioxidant system in the developing brain 
have focused on the physiological functions of classical antioxidant enzymes such as 
manganese-containing SOD (Mn-SOD), copper- and zinc-containing SOD (CuZn-SOD), 
GPx, and catalase, under conditions of oxidative stress7-9). The recently discovered antioxidant 
enzyme family, peroxiredoxins (Prdxs), was first iden tified in yeast as a 25-kDa enzyme10). 
The peroxidase activities of Prdx1 and 2 in the 2-Cys Prdx group control the reduction-
oxidation status during normal oxidative meta bolism and in the presence of oxidative 
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stress11). Prdx6 is the only member of the 1-Cys Prdx group and ca-
talyzes the reduction of phospholipid hydroperoxide12,13).

In this article, we review oxidative stress and the antioxidant 
enzyme system in the fetus and preterm infant.

ROS

The three most common ROS are superoxide (O2
•-), hydroxyl 

radical (OH•), and hydrogen peroxide (H2O2). O2
•- is produced 

when molecular oxygen gains an additional electron. O2
•- can 

develop secondary ROS, H2O2, and OH•14,15). Intracellularly, ROS 
are produced by the mitochondrial respiratory chain reac tion. 
Mitochondrial activity reduces oxygen to water via cytochrome C 
oxidase. Mitochondria can also produce antioxidant enzymes 
such as SOD, GPx, and glutathione reductase16). SOD leads to 
the generation of H2O2 from O2

•-, which is then dissociated by 
catalase or GPx into water and molecular oxygen17). Increased 
O2

•- production or an inadequate antioxidant system causes 
H2O2 accumulation. H2O2 is also produced in response to extra-
cellular responses such as cytokines, neurotransmitters, pep tide 
growth factors, and hormones18,19). H2O2 affects the func tions of 
proteins, including those of transcription factors, phospholipases, 
and protein kinases19,20). H2O2 is considered an important intra-
cellular messenger under physiological concentrations, but under 
pathological conditions, H2O2 can react with Fe2+ via Fenton 
reaction to produce the highly reactive OH•1). 

Nitric oxide (NO) is a relatively weak oxygen free radical 
produced by nitric oxide synthase (NOS). NO itself has impor tant 
roles in vessel dilation and neurotransmitter release. However, a 
reaction between NO and O2

•- leads to the formation of peroxy-
nitrite, a potent free radical causing lipid peroxidation15,21). 

Development of antioxidant enzymes during the 
perinatal period

1. Classical antioxidant enzymes 
The main antioxidant enzymes are SOD, catalase, and GPx. 

There are three forms of SOD: CuZn-SOD, which is mainly 
located in the cytoplasm, Mn-SOD, which is mainly locat ed in the 
mitochondria, and extracellular SOD (EC-SOD), which is located 
in the intracellular spaces in neonates but in the ex tracellular 
space thereafter. The only known function of SOD is to convert 
O2

•- to H2O2. Catalase and GPx catalyze the conversion of H2O2 
into oxygen and water7-9,17). 

The developing human brain needs protective antioxidant 
enzymes against the oxidative stress that suddenly occurs at 
birth, due to the hyperoxia caused by transfer from an anae-
robic in utero environment to an oxygen-rich environment. The 

expressions of SOD, catalase, and GPx are known to increase 
by 150% during the last 15% of the gestation period22). De-
velop ment of the antioxidant enzyme system during the fetal 
period is associated with redox signaling for the mainte nance of 
pregnancy through utero-placental-fetal interactions22,23). In 
addition, the regulation of antioxidant enzymes associated with 
local NO generation via NOS and downstream NO-dependent 
signaling in the placenta are important for normal vascular 
development22,24). The exact timing of the acquisition of adult 
levels of these antioxidant enzymes is obscure. Mn-SOD seems to 
be important for the protection of oligodendroglial (OL) cells in the 
presence of high levels of iron, which can lead to generation of 
OH•25). Previous studies showed that the expression of CuZn-
SOD dramatically increases during the highly metabolic period 
of myelin sheath synthesis and that the quantity of catalase-
containing peroxisomes increases during active myelin sheath 
formation in the postnatal rat26,27). Accordingly, these major 
classical antioxidant enzymes are thought to be associated with 
myelinogenesis. 

2. Prdx
Prdx was initially discovered in yeast as a 25-kDa enzyme that 

protects against oxidative damage. Prdx is a widely distributed 
superfamily of nonselenium GPx, which directly reduce H2O2 and 
alkyl hydroperoxides. There are six mammalian Prdx isoforms: 
2-Cys Prdx group (Prdx1–4), atypical 2-Cys Prdx group (Prdx5), 
and 1-Cys Prdx group (Prdx6)10,11). The 2-Cys Prdx group reduces 
H2O2 by using the electrons provided by thioredoxin. Group 
members Prdx1 and 2 play roles as scavengers of H2O2 and 
effectors of signaling cascades, in which H2O2 acts as a second 
messenger to regulate cellular responses10,11). On the other hand, 
Prdx6, the only member of the 1-Cys Prdx group, has been 
suggested to use glutathione as an electron donor. Its localization 
to both cytoplasm and lysosomes and its ability to catalyze the 
reduction of phospholipid hydroperoxide suggest that Prdx6 
has functional roles in phospholipid metabolism in a variety of 
biological systems12,13).

In our recent perinatal rat brain study, the expressions of both 
Prdx1 and 6 were deficient during the early gestational period 
and were elevated in the late gestational period. These expression 
patterns are similar to those of other classical anti oxidants. Prdx1 
and 6 expressions might be increased against oxidative stress 
that suddenly occurs at birth. It is likely that the observed in-
crease in the expressions of Prdx1 and 6 is in response to the 
sudden oxidative stress that occurs at birth. Prdx1 protein 
expression reached peak level after birth, and then, it gradually 
decreased to the adult level. Prdx6 expres sion gradually 
increased from the late gestation period to the adult level. In 
contrast, Prdx2 was largely expressed during the gestational period 
and was constitutive during the perinatal period. We also observed 
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these expression patterns in our pe rinatal rat lung studies28-30). 
Prdx6 expression parallels those of SOD and catalase31). Prdx1 
expression can be induced by specific stimulations occurring at 
birth, and it is predominantly expressed in OL cells32). Because 
immature OL cells are vulner able to free radicals, Prdx1 might 
have an important role to play in the protection of the brain from 
perinatal oxidative stress.

Oxidative stress and brain injury in preterm infants

Preterm infants are vulnerable to perinatal insults such as 
PVL, because of vascular immaturity, impaired cerebrovascular 
autoregulation, and maturation-dependent vulnerability of OL 
precursor cells1). There are two types of PVL: a focal type induced 
by localized necrosis that is expressed as cystic formation in 
ultrasonography, and the diffuse type that is more common and 
is induced by diffuse OL precursor cell apoptosis1). The diffuse type 
PVL can be detected by diffusion-weighted magnetic resonance 
imaging (MRI). It was reported that free radicals are more toxic 
to OL precursor cells than to mature OL cells by using cell culture 
under cystine-deprived medium, which re sults in glutathione 
depletion, thereby leading to a condition of free radical attack33). 
Intraventricular hemorrhage (IVH) provides a source of free iron, 
which can generate OH• by Fenton reaction34).

Hypoxia plays a primary role in perinatal insults. During 
hypoxia, accumulation of intracellular Ca2+ due to activation 
of N-methyl-D-aspartate receptors can lead to free radical 
generation, cell apoptosis, and necrosis by various mechanisms. 
Phospholipase A2 and protease are activated by intracellular 
Ca2+. Increased phospholipase A2 leads to free radical generation 
from cyclooxygenase and lipoxygenase pathways. Activated 
protease induces the conversion of xanthine dehydrogenase to 
xanthine oxidase, resulting in increased free radical generation. In 
addition, NOS is more activated and easily generates NO, which 
can react with O2

•- to form peroxynitrite, a potent free radical35). 
Preterm infants are susceptible to free radical attack because of 

several characteristics. Neuronal membranes in preterm infants 
are rich in polyunsaturated fatty acids, which provide a source of 
peroxidation16). OL precursor cells, which are mainly present in the 
immature nervous system in preterm infants, are vulnerable to free 
radical attack. Furthermore, OL precursor cells tend to accumulate 
iron for maturation purposes, and IVH also provides a source of 
free iron, which facilitates the Fenton reaction. The conversion 
of H2O2 to OH• by Fenton reaction increases cytotoxicity in the 
immature nervous system1,16,34). In fact, free radicals and OL 
precursor cells are the primary players in the pathogenesis of 
brain injury in preterm infants. In conclusion, preterm infants are 
sensitive to ROS because of an antioxidant enzyme deficiency and 
a tendency to produce large amounts of ROS.

Antioxidant therapies

Several substances are considered as therapeutic candidates 
for oxidative stress; however, further preclinical and clinical 
studies are required before clinical application of these subs-
tances. Melatonin (5-methoxy-N-acetyltryptamine) is secreted 
predominantly in the pineal gland and has potent antioxidant 
and anti-inflammatory activities. Melatonin acts as a direct 
antioxidant by scavenging free radicals, including OH•, O2

•-, 
H2O2, and peroxynitrite. Melatonin acts as an indirect antioxidant 
by increasing the levels of antioxidant enzymes such as GPx, 
glutathione reductase, SOD, and catalase36,37). Currently, mela-
tonin is not available as a formulation for neonates, but it seems 
likely that in the near future, it will be available for the treatment 
of ROS-induced neonatal diseases. Allopurinol, the xanthine 
oxidase inhibitor, can reduce free radical formation and works 
as a free radical scavenger or iron chelator at high dosages38,39). 
Although clinical data about the use of allopurinol are insufficient 
to determine its efficacy in neonates under oxidative stress, animal 
studies have provided evidence of its neuroprotective capabilities14). 
Vitamins C (ascorbic acid) and E (tocopherols and tocotrienols) are 
also considered important antioxidants. Vitamin E can stabilize 
biological membranes and protect against lipid peroxidation37,40). 
Vitamin C works as a free radical scavenger and can regenerate 
reduced tocopherol41). In one study, cotreatment with vitamins 
C and E was found to exhibit a synergistic antioxidant effect42). 
However, the study failed to show that these antioxidant vitamins 
significantly reduce ROS-associated injury. Vitamin A is an 
effective antio xidant known to prevent BPD in preterm infants. 
In fact, it can reduce BPD incidence but does not affect long-term 
outcome 43). Recombinant human SOD (rhSOD) was tested for the 
preven tion of BPD or ROP in preterm infants44,45). However, the 
effect of rhSOD was controversial, not conclusive. 

Conclusions

The balance between ROS production and the antioxidant 
system is of particular importance in fetuses and newborns. 
Preterm infants produce large amounts of ROS and have a 
deficient antioxidant system. In particular, OL precursor cells, 
which are mainly present in the immature nervous system in 
preterm infants, are vulnerable to oxidative stress. Classical 
antioxidant enzymes such as SOD, GPx, and catalase are defi-
cient in the early gestational period, but their expressions are 
upregulated during the late gestational period as a response to 
ROS exposure at birth, which is due to relative hyperoxia upon 
air exposure. The recently discovered antioxidant enzyme, Prdx, 
is an important scavenger of H2O2. Currently, several potential 
antioxidants are being studied for clinical applications, and it 
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is hoped that these efforts will result in suitable antioxi dant 
therapies for preterm infants in the near future. 
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