Association between dyslipidemia and asthma in children: A systematic review and multicenter cohort study using a common data model

a running title: Dyslipidemia and asthma

Ji Eun Lim¹, Hye Min Kim¹, Ju Hee Kim††, Hey Sung Baek††, Man Yong Han²

Author affiliations:
1. Department of Pediatrics, Kandong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
2. Departments of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

†Ju Hee Kim and Hey-Sung Baek supervised equally to this paper

Corresponding author
Hey-Sung Baek, MD, PhD
Associate Professor
Department of Pediatrics, Kandong Sacred Heart Hospital
Hallym University College of Medicine
150, Seongan-ro, Gangdong-gu, Seoul, 035355, Republic of Korea.
Phone: +82-2-2224-2251; Fax: +82-2-482-8334
E-mail: paviola7@gmail.com

Co-Corresponding author
Ju Hee Kim, MD
Clinical assistant professor
Department of Pediatrics, Kandong Sacred Heart Hospital
Hallym University College of Medicine

150, Seongan-ro, Gangdong-gu, Seoul, 035355, Republic of Korea.

Phone: +82-2-2224-2251; Fax: +82-2-482-8334

E-mail: 2004052@gmail.com
Association between dyslipidemia and asthma in children: A systematic review and multicenter cohort study using a common data model

Conflicts of interest
All authors declare no conflict of interest.

Funding
This research was supported by a grant no.2019-14 from the Kangdong Sacred Heart Hospital Fund.

ABSTRACT

Background: The association between dyslipidemia and asthma in children remains unclear. This study investigated the association between dyslipidemia and cholesterol in children.

Methods: A systematic literature review was performed to identify studies investigating the association between dyslipidemia and asthma in children from PubMed database which was searched for articles published between January 2000 and March 2022. Data of cohort study using electronic health records (EHR) from five hospitals converted to the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) were also used to identify the association between total cholesterol (TC) and asthma in children. We conducted a cohort study using Cox proportional hazard model to examine the hazard ratio (HR) of asthma after propensity score matching (PSM) and then performed an aggregate meta-analysis of the HR.

Results: In the systematic review, we reviewed eleven studies reporting an association between dyslipidemia and asthma in children. Most of these studies were cross-sectional,
and the results were inconsistent. In an OMOP-CDM multi-center analysis, the high TC (> 170 mg/dL) group as a target group included 29,038 children, and the normal TC (≤ 170 mg/dL) group as a comparator group included 88,823 children in all hospital datasets. A significant association was found between children with high TC under 15 years of age and later asthma development (pooled HR, 1.30; 95% confidence interval, 1.12–1.52) using a meta-analysis of a multi-center cohort.

Conclusion: Elevated TC levels in children had potentially associated with asthma development.

Key message

Question: Is dyslipidemia a risk factor for asthma in children?

Finding: This is a comprehensive study with systematic review and retrospective multicenter study. In a systematic review, the associations between dyslipidemia and asthma in children were inconclusive. The multi-center cohort analysis using OMOP-CDM found that elevated total cholesterol had an association with an increased risk of later asthma development.

Meaning: These findings suggest an association between dyslipidemia and asthma in children

Keywords

1. dyslipidemia
2. hypercholesterolemia
3. childhood asthma
Introduction

Asthma is a chronic inflammatory airway disorder and is regarded as a multifactorial disease. The prevalence of dyslipidemia in children has increased in recent years, and it is present in approximately 20% of adolescents.\(^1\)\(^2\) In recent decades, researchers have found that dyslipidemia is one of the pro-inflammatory host factors of asthma.\(^3\)\(^4\) Elevated levels of cholesterol can trigger pro-inflammatory cellular responses and induce the release of inflammatory cytokines from the endothelium, which in turn leads to atherosclerotic plaque formation. However, the associations between asthma and dyslipidemia were found to be inconsistent, studies in children or adolescents were limited, and the results were different from those in adults.\(^5\) A study to assess the risk of asthma with dyslipidemia through blood sampling for lipid profiles and long-term follow-up in children is practically difficult and has many limitations. There have been few longitudinal follow-up cohort studies assessing the causative relationship between dyslipidemia and asthma development.

This study aimed to determine the association between dyslipidemia and asthma in children. We reviewed previous studies reporting an association between dyslipidemia and asthma in children. Furthermore, since total cholesterol (TC) is often part of common blood tests at clinics, we used a multi-center electronic health record (EHR) database converted to the Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) to assess the association between serum levels of TC and asthma with long-term follow-up in a large sample population.
Materials and Methods

1. Systemic review

Search strategy

Studies on the association between dyslipidemia and asthma in children reported between January 2000 and May 2022 were searched using PubMed (Table 1). The search was performed using the terms dyslipidemia, TC, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), asthma, and children. Eligible studies had to be published in English and included randomized controlled trials and prospective follow-up, retrospective, and cross-sectional studies. Letters, editorials, reviews, commentaries, case reports, and personal communication were not included. The population of included studies comprised those with children or adolescents under the age of 18 years who could have asthma and control groups without asthma. In addition, studies had to assess at least one part of the lipid profile of their study population, such as TC, HDL, LDL, or TG. Additionally, eligible studies had to include quantitative results regarding the outcomes of interest. Candidate studies were screened using a two-step process. First, by reviewing the titles and abstracts of each study, studies that did not meet the inclusion criteria were excluded. Second, the full texts of the remaining studies were reviewed according to inclusion and exclusion criteria. Two reviewers identified the eligible studies. A third reviewer was consulted in the case of any uncertainty regarding eligibility. Among 226 studies, 11 were included.

Data extraction

We extracted the following relevant data from the included studies: name of first author, publication years, study design, participation age and number, exposure, and outcome of interest, and summarized the results.
2. OMOP-CDM multi-center analysis

Data Source

The present study used eight hospital-based cohorts that were converted to the OMOP-CDM format using the FEEDER-NET platform, which provides electronic health record (EHR) data without patients’ personal information. The Observational Health Data Sciences and Informatics (OHDSI) organization is an international collaboration that works to create high-quality evidence by creating and using open-source data analytics solutions on a large network of health databases from different countries. This allows for the systematic analysis of disparate observational databases. The concept behind this approach is to transform the data in those databases into a common format and representation (terminologies, vocabularies, coding schemes) and then use a library of standard analytical routines that have been written based on the common format to do systematic analyses. A key infrastructure requirement for large-scale distributed comparative effectiveness research is that all healthcare systems use CDM. Once a database has been converted to the OMOP CDM, evidence can be generated using standardized analytics tools. The CDM contains 18 data tables: person, drug exposure, drug era, condition occurrence, condition error, observation period, observation, procedure occurrence, visit occurrence, death, drug cost, procedure cost, location, provider, organization, care site, payment plan period, and cohort. The five secondary or tertiary hospitals included Kangdong Sacred Heart Hospital in Seoul (KDH), Kyung Hee University Hospital at Gangdong in Seoul (KHNMC), Kangwon National University Hospital in Chuncheon (KWMC), Gyeongsang National University Hospital in Changwon (GNUH), and Deagu Catholic University Hospital in Deagu (DCMC). All hospitals signed a memorandum of understanding for research in border-free zones. The enrollment period and total number of hospitals were 1986 to 2018 and 1,689,604 in KDH, 2006 to 2017 and 822,183 in KHNMC, 2003 to 2018 and 519,700 in KWMC, 2009 to 2022
and 618,246 in GNUH, and 2005 to 2018 and 1,688,980 in DCMC, respectively. The total number of enrolled hospitals was 5,338,713 (Figure 1). The study protocol was approved by the Institutional Review Board of Hallym University (IRB 2019-09-005) without approval from the institutional review boards of other institutions in accordance with the Memorandum of Understanding on the Research Border-Free Zone.

Study design and cohort definition

This was a retrospective cohort study. A flowchart of the study is shown in Figure 1. The index date was the date when the blood was drawn for TC measurements. Children under 15 years of age who underwent blood tests for the measurement of TC were identified. Children diagnosed with asthma before the index date were excluded. The target group was the high TC group, defined as a TC level greater than 170 mg/dL. The comparator group was the normal TC group, defined as a TC level of 170 mg/dL or less. In both groups, participants were censored either at the time of outcome identification or at the end of the observation period in the database. Children were excluded if they belonged to either group by performing the TC level test several times. Finally, there were 88,823 children in the normal TC group and 29,038 in the high TC group.

Outcomes

The primary outcome was the first diagnosis of asthma. Asthma was defined as one or more principal diagnoses of the 10th version of the International Classification of Diseases (ICD-10) codes for asthma (J45.X) and two or more prescriptions for asthma treatment drugs, such as inhaled corticosteroids (ICS), combination ICS and long-acting beta-agonists, and leukotriene modifiers. 9-11

Covariates

To balance the baseline characteristics between the high TC and normal TC groups, the demographic and clinical variables were considered covariates. Age at the index date and
sex were regarded as demographic characteristics. In addition, the diagnosed diseases and medications during the 365 days before the index date were regarded as clinical characteristics. Diagnosed diseases were identified using ICD-10. Medications were prescribed at the hospital visit. The covariates in each hospital are shown in Supplementary Tables 1 to 5.

Statistical analysis

To adjust for covariates, we performed propensity matching score analysis. A 4:1 propensity score (PS) matching with one-to-one greedy matching and a caliper of 0.2 on the standardized logit scale was performed. Standardized differences were used to compare differences in covariates between groups in both the unmatched and matched samples (differences > 10% were considered significant). A Cox proportional hazards model was then fitted to the matched cohorts using the Cohort Method R package (https://github.com/OHDSI/CohortMethod). For the outcomes of interest, hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. The incidence rate was determined per 1,000 person-years. Using the Kaplan-Meier plot, the survival probability for asthma during the follow-up period was calculated, and the log-rank test was used to compare each cohort.

In addition, negative outcomes that were assumed to not be associated with the target or comparative cohorts were established (Supplementary Table 6). The empirical correction of \(P \) values was performed by applying the empirical null distribution to the point estimates of the negative control outcomes. It was assumed that the true relative risk of negative control outcomes between the target and control cohorts was 1.

A random-effects meta-analysis was performed without aggregating the data from each hospital. Study heterogeneity was assessed using Cochran’s Q test and I^2 statistics. Heterogeneity was considered statistically significant when the P-value was less than 0.1
the Cochran Q test, and the I² statistic value was greater than 50%. All analyses were
performed using R statistical software (Version 3.6.1; R Foundation for Statistical
Computing) and the R meta-package.
Results

1. Systemic review

The eleven included studies (2000–May 2022) are summarized in Table 1. There were seven cross-sectional studies, one case-control study, two prospective cohort studies, and one retrospective study. In studies using the United States National Health and Nutrition Examination Survey database by Lu et al.13, reduced HDL and elevated LDL, TC, TG, and glucose levels were not significantly associated with the presence of current asthma in approximately 23,000 children and adolescents. On the other hand, two cross-sectional studies by Chanachon et al. reported that asthmatic children with dyslipidemia had significant associations between parameters of lung function tests, including impulse oscillometry (IOS), and spirometry.14, 15 Three other cross-sectional studies16–18 have described significant associations between serum levels of lipid panels and asthma. In particular, Chen et al.19 discovered not only an association between serum levels of TC and LDL and asthma but also an interactive effect of obesity and asthma on high LDL levels in boys ($P = 0.03$).

In a case-control study,20 adolescents with asthma aged 16–18 years had a lower HDL level at 11–12 and 16–18 years of age than those without asthma. In addition, low HDL levels at 16–18 years of age had a positive association with asthma even after adjusting for HDL levels at 11–12 years of age.

Two longitudinal studies reported conflicting results. A prospective community-based cohort study from 14–20 years of age by Rasmussen et al.21 showed that the level of lipid profiles at 14 and 20 years of age had no association with airway hyperresponsiveness measured at 20 years of age. In another longitudinal study of 3,982 adolescents aged 11–12 to 15–17 years,22 low HDL level at 11–12 years of age was associated with an increased risk of asthma at 15–17 years of age.
2. OMOP-CDM multi-center analysis

Study characteristics
In all hospital datasets after PS matching, the high TC group as a target group included 29,038 children, and the normal TC group as a comparator group included 88,823 children. Table 2 shows the baseline characteristics of the matched cohort. The baseline demographic and clinical data of the unmatched and matched cohorts in each hospital are described in Supplementary Tables 1 to 5. Before PS matching, age group distribution; sex ratio; medical history, such as acute respiratory disease and urinary tract infection; and medication history, such as antibiotics and anti-inflammatory drugs, differed between the high TC and normal TC groups. However, after PS matching, the age group distribution, sex ratio, medical history, and medication history were balanced between the high TC and normal TC groups. Each hospital had slightly different characteristics, but the age group of 5–9 years accounted for the largest proportion, and the male-to-female ratio was comparable in all hospitals.

Association between TC and asthma in children using EHR CDM-database
Table 3 and Figure 2 show the association between total levels and asthma in children. The asthma incidence rate (per 1000 PY) of the high TC group tended to be higher than that of the normal TC group, except for KWMC. The meta-analysis showed that the high TC group was significantly associated with an increased risk of asthma (pooled HR, 1.30; 95% CI, 1.12–1.52). There was no significant heterogeneity across the databases ($I^2 = 0\%$, $P = 0.68$). The survival curves for asthma in each hospital are shown in Figure 3.
Discussion

Using multi-center EHR record in Korea, this study found that hypercholesterolemia in children had a potential association with an increased risk of asthma development. It also summarized the reported associations between dyslipidemia and asthma in children in the last 20 years. Most of the previous studies were cross-sectional studies, and the results of the association between dyslipidemia and asthma in children were inconclusive.

Cholesterol is an essential and major molecule in the body for the construction of the cell membrane and the synthesis of steroid hormones, bile acids, and fat-soluble vitamins. However, dyslipidemia, defined as abnormal plasma levels of TC, HDL, LDL, TG, or other lipoproteins, adversely affects human health. Elevated serum cholesterol levels enhance pro-inflammatory genes, cellular adhesion molecules, and pro-inflammatory cytokines. The serum level of HDL had a negative correlation with CRP level, which is a biomarker of systemic inflammation. Dyslipidemia could activate innate and acquired immunity, then amplify airway inflammation pathways. This consequently increased bronchial smooth muscle tone, airway inflammation, and hyperreactivity. In asthmatic children, there was an association between dyslipidemia and airway resistance measured by forced oscillation technique. Furthermore, it has been reported in an animal study that dyslipidemia was associated with a switch from Th1 to Th2 response. Dyslipidemia increased the release of Th2 and Th17 cytokines including IL-1, IL-4, IL 6, and IL 17, and decreased the release of IL-10.

Obesity is a well-established risk factor for asthma in children, and dyslipidemia, which commonly co-occurs with obesity, has been suggested as a potential mechanism by which obesity increases the risk of asthma. However, a retrospective study with children found that hypercholesterolemia and obesity each independently increased the likelihood of asthma. This suggests that dyslipidemia may have a direct influence on asthma risk, in
addition to its association with obesity.28 Moreover, dyslipidemia appears to be a factor that
affects pulmonary function and sensitization, even in non-obese patients.29 Unfortunately,
due to limitations in the data available from the CDM database used in the study, information
on the subjects' body weight or body mass index was not accessible. Therefore, caution is
needed when interpreting our results, and further confirmation of the associations through
well-designed prospective cohort studies will be necessary.

This study recapitulated the reported associations between dyslipidemia and asthma in
children in the last 20 years by reviewing previous studies. Compared with adults, studies
on the association between dyslipidemia and asthma in children have been limited. In
previous studies over the past 20 years, most of them were cross-sectional studies,13-20 which
made it difficult to determine the causal relationship and showed only simple associations.
Moreover, two longitudinal observational studies showed conflicting results.21, 22 In addition,
all previous studies considered the onset of asthma as an outcome limited to children or
adolescents.13-22, 28

The present large-scale study included 5,338,713 Korean patients to assess the associations
between hypercholesterolemia in children and asthma using multi-center databases
converted to the OMOP-CDM, which allowed PS matching with covariates including age,
sex, and clinical conditions such as diagnosed diseases and prescribed medications. In
addition, the OMOP-CDM database is useful for pediatric studies in which randomized
controlled trials are practically limited. Our results could help guide further large-scale
cohort studies aimed at revealing an association between dyslipidemia and asthma
development.

However, this study has several limitations as well. First, because this was an observational
study, residual confounding factors may have affected the study results despite applying PS
matching. As mentioned earlier, information on the subjects' anthropometric index, family
history of allergies, lifestyle habits, and dietary habits was lacking in this study. Second, the
definition of asthma was based on ICD-10 diagnostic and prescription codes. Third, it was
not possible to distinguish between fasting and not fasting when measuring the cholesterol
levels. However, except for TG, non-fasting lipid panel levels can be used to screen for
dyslipidemia in children.30 Furthermore, we were unable to demonstrate associations with
HDL, LDL, and TG levels, except for total cholesterol. Total cholesterol is often included
in routine pediatric laboratory tests, whereas HDL, LDL, and TG levels are typically
measured as additional tests in cases of obesity or other clinical conditions. As a result, the
number of results available for HDL, LDL, and TG in the CDM database was small, and
there was concern about selection bias, so we were unable to analyze them.

In conclusion, elevated serum TC levels were associated with an increased risk of asthma
in multi-center EHR databases using propensity score matching. Our results suggest that
asthma should be considered a systemic disorder that shares certain characteristics with other
chronic inflammatory disorders.

\textbf{Ethical Approval}

The study was approved by the ethics commission of the Institutional Review Board of
Hallym University (IRB 2019-09-005) and was done in accordance with the tenets of the
Declaration of Helsinki and in compliance with Swiss patient data protection regulations.

\textbf{Authors' contributions}

Ju Hee Kim and Hey Sung Baek contributed to conception and design; Ji Eun Lim and Hye
Min Kim acquired the data; Man Yong Han, and Hey-Sung Baek analyzed and interpreted
the data; Ji Eun Lim and Ju Hee Kim drafted the article; Man Yong Han and Hey-Sung Baek
critically revised the article and provided important intellectual content; and all authors approved the final version to be published.

Funding

None

Conflicts of interest

There are no conflicts of interest relevant to this article.

References

5. Peng J, Huang Y. Meta-analysis of the association between asthma and serum levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. Annals of Allergy, Asthma & Immunology 2017; 118:61-5.

Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in medicine 2015; 34:3661-79.

Shore SA. Obesity and asthma: possible mechanisms. Journal of Allergy and Clinical Immunology 2008; 121:1087-93.

Table 1. Summary of previous studies on the association between dyslipidemia and asthma in children

<table>
<thead>
<tr>
<th>Literature from 2000 to 2022 searched in PubMed</th>
<th>Search</th>
<th>Number of searched studies</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author/year of publication</th>
<th>Study design</th>
<th>Number and age of participants</th>
<th>Exposure</th>
<th>Outcome</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chanachon et al., 2022</td>
<td>Cross-sectional study</td>
<td>141 asthmatic children aged 0 – 19 years</td>
<td>TC, LDL, and TG</td>
<td>IOS parameter (R5, R20, Fres, ALX)</td>
<td>Asthmatic children with high LDL had significantly higher expiratory phase R5, whole breath R20, and expiratory phase R20 than did children with normal LDL concentrations, irrespective of their obesity status.</td>
</tr>
<tr>
<td>Chanachon et al., 2022</td>
<td>Cross-sectional study</td>
<td>150 asthmatic children aged 5 – 18 years</td>
<td>TC, LDL, HDL, TG, non-HDL, TG/HDL, LDL/HDL</td>
<td>Spirometry parameter</td>
<td>TG/HDL ratio was associated with airway obstruction (% FEV1/FVC ratio < 90) after adjusting with other blood lipids, body weight, BMI z score, and obesity status. aOR 2.78; 95% CI 1.5–5.15, P = 0.001.</td>
</tr>
<tr>
<td>Lu et al., 2019</td>
<td>Cross-sectional study</td>
<td>11,662 children aged 3 – 11 years and 12,179 adolescents aged 12 – 19 years</td>
<td>Glucose, TC, HDL, LDL, TG, HOMA-IR</td>
<td>Current presence of asthma</td>
<td>Elevated fasting plasma glucose, reduced HDL, elevated LDL, TC, TG, and HOMA-IR had no association with the presence of current asthma in children or adolescents.</td>
</tr>
<tr>
<td>Ko et al., 2018</td>
<td>Cross-sectional study</td>
<td>123 adolescents with asthma and 2,718 adolescents without asthma, aged 11 – 18 years</td>
<td>TC, LDL, HDL, TG</td>
<td>Asthma prevalence</td>
<td>Asthma prevalence was greater in adolescents with a high TC level (aOR 1.69; 95% CI 1.01–2.82) and TG/HDL ratio (aOR 1.67; 95% CI 1.01–2.76).</td>
</tr>
<tr>
<td>Yiallouros et al., 2014</td>
<td>Case-control study</td>
<td>68 children with asthma, 123 children with current wheezer only, and 660 control children for their ages 11-12 to 16-18 years.</td>
<td>Asthma, current wheezer only</td>
<td>HDL</td>
<td>Adolescent asthma is associated with low serum HDL independent levels of previous HDL levels in childhood.</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Participants</td>
<td>Measures</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2013</td>
<td>Cross-sectional study</td>
<td>237 adolescent with asthma and 225 control adolescent aged 10–15 years</td>
<td>non-obese controls, obese controls, non-obese asthmatics, and obese asthmatics</td>
<td>TC, LDL levels increased progressively in the group of obese asthmatics > non-obese asthmatics > obese controls > non-obese controls. There was an interactive effect of obesity and asthma on hyperlipidemia in boys (P for interaction = 0.03).</td>
<td></td>
</tr>
<tr>
<td>Rasmussen et al., 2013</td>
<td>Longitudinal follow up</td>
<td>272 participants were tracked from 14 to 20 years of age.</td>
<td>BMI, TC, LDL, HDL, LDL/HDL ratio</td>
<td>After adjusting for sex, lung function, smoking and asthma, BMI at age 14 or 20 years had positive associations with increased AHR at age 20, while neither LDL, HDL, LDL/HDL ratio, nor total cholesterol were significantly associated with AHR.</td>
<td></td>
</tr>
<tr>
<td>Yiallouros et al., 2012</td>
<td>Longitudinal follow up</td>
<td>3,982 adolescents were tracked from 11–12 years to 15–17 years.</td>
<td>TC, LDL, HDL, TG</td>
<td>Low HDL level (< 40mg/dL) in 11–12-year-olds was associated with an increased risk of asthma in 15-17-years-olds. OR 1.89; 95% CI 1.19–3.00 for ever having asthma OR 1.89; 95% CI 1.02–3.53 for active asthma</td>
<td></td>
</tr>
<tr>
<td>Cottrell et al., 2011</td>
<td>Cross-sectional study</td>
<td>17,994 children aged 4–12 years</td>
<td>TC, HDL, LDL, TG</td>
<td>Regardless of BMI, children with asthma have higher TG levels than children without asthma $\beta = 0.04$, $P = 0.006$</td>
<td></td>
</tr>
<tr>
<td>Fessler et al., 2009</td>
<td>Cross-sectional study</td>
<td>7,005 children aged 6 years or over</td>
<td>TC, HDL, non-HDL</td>
<td>TC and non-HDL levels had an inverse association with asthma. OR 0.92; 95% CI 0.86–0.98, per 1–SD increased TC for current asthma OR 0.91; 95% CI 0.85–0.98, per 1–SD increased non-HDL for current asthma</td>
<td></td>
</tr>
<tr>
<td>Al-Shawwa et al., 2006</td>
<td>Retrospective study</td>
<td>188 children and adolescents aged 4–20 years</td>
<td>TC</td>
<td>TC levels had a positive association with asthma. OR 7.54; 95% CI 1.13–50.7 Obese patients had a higher risk of asthma than non-obese patients. OR 2.29; 95% CI 1.13–4.63</td>
<td></td>
</tr>
</tbody>
</table>
Obesity and hypercholesterolemia increased the likelihood of asthma without interaction effects between both ($P = 0.6$).

\[\text{HOMA-IR calculated using the following equation: fasting glucose (mg/dL) \times fasting insulin (pmol/L)/405/6}. \]

Abbreviations: TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TG, triglyceride; R5, resistance at 5 Hz; R20, resistance at 20 Hz; Fres, frequency response; ALX, the area of reactance; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; OR, odds ratio; aOR, adjusted odds ratio; CI, confidence interval; HOMA-IR, homeostatic model assessment-insulin resistance; AHR, airway hyperresponsiveness; BMI, body mass index; SD, standard deviation.
Table 2. Baseline characteristics in the multi-center OMOP-CDM database

<table>
<thead>
<tr>
<th>%</th>
<th>KDH</th>
<th>Matched cohort</th>
<th>KWMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal TC</td>
<td>High TC</td>
<td>SD %</td>
</tr>
<tr>
<td></td>
<td>(n=24,504)</td>
<td>(n=7,071)</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–4 years</td>
<td>34.1</td>
<td>35.1</td>
<td>2</td>
</tr>
<tr>
<td>5–9 years</td>
<td>38.9</td>
<td>38.0</td>
<td>2</td>
</tr>
<tr>
<td>10–14 years</td>
<td>27.0</td>
<td>26.8</td>
<td>0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>57.1</td>
<td>56.4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>GNUH</th>
<th>DCMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal TC</td>
<td>High TC</td>
</tr>
<tr>
<td></td>
<td>(n=17,993)</td>
<td>(n=6,202)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–4 years</td>
<td>33.7</td>
<td>35.0</td>
</tr>
<tr>
<td>5–9 years</td>
<td>39.2</td>
<td>38.2</td>
</tr>
<tr>
<td>10–14 years</td>
<td>27.1</td>
<td>26.8</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>53.1</td>
<td>52.7</td>
</tr>
</tbody>
</table>

KDH, Kangdong sacred heart hospital; KHNMC, Kyung Hee university hospital at Gandong; KWMC, Kangwon national university hospital; SJICH, Incheon Sejong hospital; MJH, myongji hospital; GNUH, Gyeongsang national university hospital; DCMC, Deagu catholic university hospital; SD, standard difference; OMOP-CDM, Observational Medical Outcomes Partnership-Common Data Model.
Table 3. Meta-analysis results of the associations between elevated levels of TC and asthma in children

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Study period</th>
<th>Total number</th>
<th>Follow-up time, y</th>
<th>Asthma, N</th>
<th>Incidence rate (per 1000PY)</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDH</td>
<td>1986 – 2018</td>
<td>1,689,604</td>
<td>48,859</td>
<td>450</td>
<td>9.21</td>
<td>1.49</td>
<td>1.11 – 1.99</td>
</tr>
<tr>
<td>KHNMC</td>
<td>2006 – 2017</td>
<td>822,183</td>
<td>44,960</td>
<td>279</td>
<td>6.21</td>
<td>1.13</td>
<td>0.83 – 1.51</td>
</tr>
<tr>
<td>KWMC</td>
<td>2003 – 2018</td>
<td>519,700</td>
<td>29,773</td>
<td>271</td>
<td>9.10</td>
<td>1.20</td>
<td>0.88 – 1.64</td>
</tr>
<tr>
<td>GNUH</td>
<td>2009 – 2022</td>
<td>618,246</td>
<td>37,909</td>
<td>19</td>
<td>1.37</td>
<td>1.34</td>
<td>0.62 – 2.88</td>
</tr>
<tr>
<td>DCMC</td>
<td>2005 – 2018</td>
<td>1,688,980</td>
<td>40,283</td>
<td>240</td>
<td>5.96</td>
<td>1.44</td>
<td>1.01 – 2.03</td>
</tr>
</tbody>
</table>

N, number; y, year; PY, patient-years; HR, hazard ratio; CI, confidence interval; TC, total cholesterol; KDH, Kangdong sacred heart hospital; KHNMC, Kyung Hee university hospital at Gandong; KWMC, Kangwon national university hospital; GNUH, Gyeongsang national university hospital; DCMC, Deagu catholic university hospital; SD, standard difference.
Figure legends

Figure 1. Study flow chart of the inclusion of participants in the target and comparative cohorts

OMOP–CDM, Observational Medical Outcomes Partnership–Common Data Model; N, number; KDH, Kangdong sacred heart hospital; KHNMC, Kyung Hee university hospital at Gandong; KWMC, Kangwon national university hospital; GNUH, Gyeongsang national university hospital; DCMC, Deagu catholic university hospital, TC, total cholesterol.

Figure 2. Forest plot of the risk of asthma in the normal TC and high TC groups

KDH, Kangdong sacred heart hospital; KHNMC, Kyung Hee university hospital at Gandong; KWMC, Kangwon national university hospital; GNUH, Gyeongsang national university hospital; DCMC, Deagu catholic university hospital; IR, incidence rate; PY, patient-years; TC, total cholesterol; CI, confidence interval.

Figure 3. Kaplan Meier curve for the probability of disease-free survival (no asthma development) in children with normal TC (blue line) and high TC (red line). (A) KD, (B) KHNMC, (C) KWMC, (D) GNUH, and (E) DCMC. Criteria used to define asthma: at least one diagnostic code based on ICD-10 and at least two prescriptions of asthma treatment drugs. The high TC was defined as TC over 170

KDH, Kangdong sacred heart hospital; KHNMC, Kyung Hee university hospital at Gandong; KWMC, Kangwon national university hospital; GNUH, Gyeongsang national university
hospital; DCMC, Deagu catholic university hospital, TC, total cholesterol; PY, patient-years; IR, incidence rate; HR, hazard ratio; CI, confidence interval; ICD, international classification of disease.
Figure 1.

5 OMOP-CDM converted database (N = 5,338,713) (KDH, KHMC, KWMC, GNUH, DGMH)

Subjects with high TC (N = 55,037) or normal TC (N = 163,455)
- Aged < 15 years
- Observational period > 1 year prior to cohort entry
- No previous outcome

Exclusion
- Subjects included in both groups (high TC = 24,683, Normal TC = 24,683)
- Not matched of minimum time at risk of 1 day
 (high TC = 1,170, normal TC = 3,747)
- Not matched on propensity score (high TC = 146, normal TC = 46,202)

Comparator group: Normal TC group (TC ≤ 170mg/dL) (N = 88,823)
Target group: High TC group (TC > 170mg/dL) (N = 29,038)
Figure 2.
Figure 3.