Should we prescribe carbapenem for treating febrile urinary tract infection caused by extended-spectrum β-lactamase-producing *Enterobacteriaceae* in children with vesicoureteral reflux?

Ji Young Park, MD, PhD

Department of Pediatrics, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea

Key message

Recent studies are focused on the noninferiority of noncarbapenem therapy for the treatment of extended-spectrum β -lactamases producing *Enterobacteriaceae* infections to reduce the utilization of carbapenem.

Urinary tract infections (UTIs) are the most common serious bacterial infections in children.¹⁾ The most common pathogens causing UTIs are *Enterobacteriaceae*, such as *Escherichia coli* and *Klebsiella* species.²⁾ Antimicrobial drug resistance to fluoroquinolone, cephalosporin, and carbapenem among *Enterobacteriaceae* has spread globally over the past few decades and become a pressing problem.³⁾ The dissemination of drug-resistant organisms is

troublesome for clinicians when selecting empirical antibiotics. Patients with UTIs were historically administered broad-spectrum cephalosporin as the empirical therapy. Carbapenem is the definitive therapy for infections caused by extended-spectrum β -lactamases (ESBL)–producing bacteria. However, carbapenem-sparing options are on the rise for mild infections with ESBL producers because its overuse is leading to the emergence of carbapenem-resistant organisms.

Recent studies have focused on the noninferiority of noncarbapenem therapy for the treatment of ESBL-producing *Entero bacteriaceae* infections to reduce carbapenem utilization.⁴⁻⁷⁾ A review article examined noncarbapenem β -lactam (cephamycin, cefepime, piperacillin/tazobactam, and newer β -lactam/ β -lacta

Fig. 1. Classification of patients according to immune status, severity at presentation, source of infection, and treatment options for infections caused by extended-spectrum β -lactamase-producing *Enterobacteriaceae* by group.^{7) a)}Severely immunocompromised: neutropenia (<500/µL), leukemia, lymphoma, HIV infection with <200 CD4/µL, solid organ or hematopoietic stem cell transplantation, cytotoxic chemotherapy, steroids (15 mg of prednisone daily for >2 weeks); ^{b)}Severe: Pitt score ≥4, Acute Physiology and Chronic Health Evaluation II score > 10, intensive care unit admission, and presentation with severe sepsis or septic shock; ^{c)} High risk: high-inoculum infections, drainage impossible or inadequate (e.g., pneumonia, endocarditis, inadequately drained deep-seated infections); ^{d)}Intermediate risk: not high or low risk; ^{e)}Low risk: urinary tract infection with no or a released obstruction.

Corresponding author: Ji Young Park, MD, PhD, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea

Email: jypark@cdumc.or.Kr, mups.//orcid.org/0000-0002-6777-0494 Pocoived: 3 Nevember 2020 Revised: 16 December 2020 Accepted: 28 Decemb

Received: 3 November, 2020, Revised: 16 December, 2020, Accepted: 28 December, 2020

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 by The Korean Pediatric Society

mase inhibitors) therapy for ESBL-producing bacterial infections. The authors suggested that noncarbapenem could be considered in patients with mild to moderate low-inoculum infections.⁶⁾ A recent literature review summarized published articles regarding the treatment of ESBL-producing Enterobacteriaceae infections. Patients were divided into 3 groups: group 1, severe or nonsevere infections from high-risk sources and/or severely immunocompromised patients; group 2, nonsevere infections and intermediate-risk sources; and group 3, nonsevere infections and lowrisk sources (Fig. 1). They concluded that carbapenem should be the choice of drug for the treatment of ESBL-producing Enterobacteriaceae in severe infections, whereas other antimicrobial agents could be considered for mild infections such as UTIs.7) Thus, using noncarbapenem therapy for treating UTIs caused by ESBL-producing bacteria could be an effective way to prevent carbapenem overuse.

Furthermore, children with vesicoureteral reflux (VUR) are at high risk for acute and recurrent pyelonephritis.⁸⁾ In patients with VUR, it is unknown whether carbapenem therapy can reduce the short-term recurrence. Therefore, a prospective study is needed to compare the treatment outcomes of carbapenemtreated and non–carbapenem-treated patients diagnosed with UTIs due to ESBL producers underlying VUR. To enable a careful conclusion, large samples and multivariate analysis are required.

If UTIs caused by ESBL-producing bacteria are alleviated through empirical noncarbapenem therapy, switching to carbapenem therapy is a difficult decision for clinicians. To solve this challenge and develop management guidelines, additional largescale randomized controlled trials are required.

Conflicts of Interest

No potential conflicts of interest for this article are reported.

See the article "Febrile urinary tract infection in children: changes in epidemiology, etiology, and antibiotic resistance patterns over a decade" via https://doi.org/10.3345/cep.2020. 00773.

References

- 1. Lindsey K, Marianella H, John DS. The clinical diagnosis and management of urinary tract infections in children and adolescents. Paediatr Int Child Health 2017;37:273-9.
- Zorc JJ, Kiddoo DA, Shaw KN. Diagnosis and management of pediatric urinary tract infections. Clin Microbiol Rev 2005;18:417-22.
- 3. Amy JM, Giswlw P, Johann DDP. The role of epidemic resistance plasmids and international high risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015;28:565-91.
- Lee B, Kang SY, Kang HM, Yang NR, Kang HG, Ha IS, et al. Outcome of antimicrobial therapy of pediatric urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Infect Chemother 2013;45:415-21.
- Yoshifusa A, Isil IE, Kunihiko F, Hitomi W, Yasuha O, Satoshi H, et al. Efficacy of non-carbapenem antibiotics for pediatric patients with first febrile urinary tract infection due to extended-spectrum beta-lactamaseproducing Escherichia coli. J Infect Chemother 2017;23:517-22.
- 6. Pranita DT, Jesus RB. The use of noncarbapenem β -lactams for the treatment of extended-spectrum β -lactamase infections. Clin Infect Dis 2017; 64:972-80.
- Gutiérez-Gutiérrez B, Rodríguez-Bano J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin Microbiol Infect 2019;25:932-42.
- Elder JS. Vesicoureteral reflux. In: Kliegman RM, Stanton BF, St. Geme JW III, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 21st ed. Philadelphia (PA): Elsevier, 2019:2796-800.

How to cite this article: Park JY. Should we prescribe carbapenem for treating febrile urinary tract infection caused by extended-spectrum β -lactamase-producing Enterobacteriaceae in children with vesicoureteral reflux? Clin Exp Pediatr 2021; 64:284-5. https://doi.org/10.3345/cep.2020.01830.