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Review article

The publication of genetic epidemiology meta-analyses has 
increased rapidly, but it has been suggested that many of the 
statistically significant results are false positive. In addition, 
most such meta-analyses have been redundant, duplicate, and 
erroneous, leading to research waste. In addition, since most 
claimed candidate gene associations were false-positives, cor-
rectly interpreting the published results is important. In this 
review, we emphasize the importance of interpreting the results 
of genetic epidemiology meta-analyses using Bayesian statistics 
and gene network analysis, which could be applied in other 
diseases.

Key words: Systemic lupus erythematosus, False-positive re-
port probability, Bayesian false-discovery probability, STRING 
database, Protein-protein interaction

Key message
• Bayesian false-discovery probability and false-positive report 

probability are the 2 major Bayesian methods used to evaluate 
noteworthiness of a genetic variant.

• Application of stricter P value is needed to confirm statistical 
significance in meta-analyses.

• Gene network analysis of noteworthy genetic variants shows a 
blueprint of the genetic background in complex diseases.

Introduction

Although the publication of meta-analyses has rapidly incre-
ased, researchers have started to determine that many of the sta-
tistically significant results are false-positive.1,2) Most such meta- 

analyses have redundant duplicate topics and many errors.1,3) 
Although there has been an impressive increase in meta-analyses 
from China, particularly those on genetic associa tions, most 
claimed candidate gene associations are likely false-positives, 
suggesting an urgent global need to incorporate genome-wide 
data and state-of-the art statistical inferences to avoid a flood of 
false-positive genetic meta-analyses. In this review, we emphasize 
the importance of discerning meaningful studies and interpreting 
their results using Bayesian statistics and gene network analysis. 
For this purpose, we adopted and reanalyzed significant genes 
from our previously published sys temic meta-analyses of genetic 
association studies of systemic lupus erythematosus (SLE) as an 
example.4)

Current understanding of genetic associations 
with “noteworthiness”

The traditional interpretation of association studies was la-
beled as statistically significant by the chosen P value of less 
than 0.05.5) Over the past few decades, an unprecedented ad-
vance in genotyping technologies has led to a marked increase 
in the publication of genome-wide association studies (GWAS).6) 
GWAS results generally have much smaller P values than those 
of observational studies, which are expected to have higher 
numbers of false-positive noteworthy associations. However, in 
observational studies, the threshold P value is generally fixed at 
0.05 and the small sample size of studies allows for a P value that 
is highly responsive to a change in the number of cases.5) In the 
case of GWAS, the genome-wide significance threshold should be 
P<5×10-8.7) However, some uncertainty persists about the most 
appropriate genome-wide significance threshold. At the practical 
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FPRP, σ and Zα/2 are replaced by the standard error of the log-
OR estimates and the 2-sided P value point of the standard 
normal distribution. All FPRP computations were performed 
using the Excel spreadsheet provided by Wacholder et al.,12) and 
associations with FPRP <0.2 were considered noteworthy as 
recommended by the authors.

2. Bayesian false-discovery probability

BFDP values can be obtained using methods created by 
Wakefield.13) This provides information based on the cost of a 
false discovery and a false nondiscovery. Different from FPRP, 
BFDP is calculated using the following equation:

BFDP=
ABF×PO

  (3)
ABF×PO+1

where PO is the prior odds of the null hypothesis and is 
equal to πo/(1-πo) wherein πo is the prior probability of the 
null hypothesis and ABF is the approximate Bayesian factor 
computed using OR and standard error. Its approximation is 
based on a logistic regression model instead of a standard normal 
distribution. The noteworthiness is assessed with the cutoff value 
of 0.8 for BFDP, which means a false nondiscovery 4 times as 
costly as a false discovery.13)

BFDP seems more reasonable with sound methodological 
derivation than FPRP. While FPRP is stated as the lowest FPRP 
value at which a test would yield a noteworthy finding and 
assumes a specific point as a prior,12) BFDP uses average over 
all alternatives as a prior.13) In other words, FPRP produces 
posterior null estimates that are smaller than those produced 
by BFDP because FPRP is essentially the lower bound on the 
posterior probability corresponding to the observed estimates.22) 
All BFDP computations were performed using the Excel spread-
sheet provided by Wakefield (http://faculty.washington/edu/
jonno/cv.html).13)

3. Tendencies of FPRP and BFDP with P values

The main purpose of the methods we introduced in this 
review is to discover false-positive results, which already satisfy 
the current scientific statistical standards regarding a P value 
indicating statistical significance. Therefore, with the published 
results of the SLE field synopsis and systematic review,4) we 
calculated the proportion of noteworthy variants relevant to the 
P value. A conventional meta-analysis of observational studies 
defines its significance with a P value of less than 0.05, whereas 
a meta-analysis of GWAS uses 5×10-8 as a threshold. We 
excluded data with which the results of FPRP or BFDP were not 
mathematically calculable, expressed as “NA.”

The ratio for the noteworthy variants out of positive findings 
in the meta-analysis of observational studies decreased stiffly as 
the P value exceeded 0.001 for both FPRP and BFDP (Fig. 1). In 
the same manner, the ratio of the noteworthy findings among the 
meta-analysis results of GWAS by FPRP computation decreased 
to 0.5 with a P value >10-5 (Fig. 2), while BFDP also showed 
a sudden decrease in the number of noteworthy variants at a 

level, some initial GWAS used a threshold of P<1×10-7.8-10) The 
general rule, however, is that associations with P< 5×10-8 are 
considered replicable.11) And, associations with P≥1×10-7 are 
not accepted unless proven by more stringent replication.5)

Discovering noteworthy variants

The common misunderstanding of the P value is that it is, in 
fact, not the probability of the null hypothesis being rejected by 
mistake but the probability of the null hypothesis. Therefore, 
the evaluation of the hypothesis requires a Bayesian approach 
that requires prior probability of the hypothesis and the data.12) 
To date, 2 major Bayesian approaches in the assessment of false 
report probability were published, the false-positive report pro-
bability (FPRP) and the Bayesian false-discovery probability 
(BFDP).12,13) FPRP and BFDP have been used in various genetic 
studies and field synopses in cancer studies (i.e., lung, ovarian, 
colorectal, gastric, hematologic) to identify genuine noteworthy 
genetic variants.5,14-21) However, attempts to discover note-
worthy variants in autoimmune diseases using FPRP and BFDP 
are scarce.

1. False-positive report probability

FPRP is defined as “the probability of no true association 
between a gene variant and disease (null hypothesis)” for a 
statistically significant finding now assumed as a P<0.05.11) 
Developed by Wacholder et al.,12) FPRP is calculated with the 
observed P value, statistical power of the test, and the prior 
probability that an association is true. The prior probabilities we 
assumed when calculating FPRP were 10-3 for a candidate gene 
variant and 10-6 for a random single nucleotide polymorphism 
(SNP) as suggested by Wacholder et al.12) In our previous field 
synopsis of SLE,4) we calculated FPRP at those 2 assumed prior 
probabilities. The statistical power to detect an odds ratio (OR) 
of 1.2 and 1.5 was used for FPRP at both prior probabilities. 
Statistical power based on the ability to detect an OR of 1.5 (or 
its reciprocal 1/1.5=0.67 for an OR<1) was first proposed by 
Wacholder et al.,12) which we thought might be too conservative. 
Thus, we advocate using statistical power to detect an OR of the 
median among the results of studies and 1.5. The FPRP can be 
obtained using the following equation:

FPRP=
α(1-π)

(1)
α(1-π)+(1-β)π

where π is the prior probability, α is the lowest level of 
significance at which a test is noteworthy (α=0.05), while (1-β) is 
the statistical power obtained using the following equation:

1-β= φ
[log(ORA/ORO)]

 - Zα/2   (2)
σ

where φ is the cumulative distribution function of the standard 
normal distribution and Zα/2 is the α/2 point of the standard 
cumulative normal distribution. For the actual computation of 



Nam SW, et al. Understanding the genetics in SLE www.e-cep.org210

P≥10-5. The difference between FPRP and BFDP is that more 
genetic variants located in the borderline (5×10-8<P<0.05) 
significance in GWAS meta-analyses were noteworthy in BFDP 
than in FPRP (Fig. 2).

The current cutoff for a P<0.05 might be too broad, as it 
would yield too many false-positive results, thus leading to the 
overinterpretation of the retrieved results. According to the 
findings of this review, the statistical significance in the meta-
analysis of observational studies requires evaluation with a more 
stringent P value. Furthermore, GWAS meta-analysis results are 
highly reliable because all variants under a P value of 5×10-8 
were noteworthy with FPRP and BFDP computations (Table 1).

Noteworthy genetic variants in SLE and their 
functions

Our previous systematic review of SLE calculated note-
worthiness of published significant genetic variants using FPRP 
and BFDP.4) Table 1 summarizes the proportion of noteworthy 
gene variants in each type of GWAS according to the different 
statistical approaches and significance thresholds. Seventy-five 

distinct genes with 133 genotype comparisons from observa-
tional studies were identified as significant. Of the 133 genotype 
comparisons, 23 (17%) and 11 (8%) were verified as note-
worthy (<0.2) using FPRP estimation at a prior probability of 
10-3 and 10-6 with statistical power to detect an OR of 1.2. In 
addition, 34 (26%) and 18 (14%) showed a noteworthiness 
at a prior probability of 10-3 and 10-6 with a statistical power 
to detect an OR of 1.5. In terms of BFDP, 50 (38%) and 29 
(22%) comparisons had noteworthy findings (<0.8) at a prior 
probability of 10-3 and 10-6. Seventy genes with 89 genotype 
comparisons extracted from GWAS were reportedly signifi-
cant with a P<5×10-8. On FPRP, 64 comparisons were note-
worthy (<0.2) at both prior probabilities of 10-3 and 10-6 
with a statistical power to detect an OR of 1.2 and 1.5. The 
noteworthiness of 25 comparisons was not available for the same 
reason as mentioned above. With respect to BFDP estimations, 
all of the calculated values at both prior probabilities of 10-3 and 
10-6 were <0.8, indicating noteworthiness. As a result, all of the 
statistically significant results of the meta-analyses of GWAS were 
assessed to be definitely noteworthy under FPRP and BFDP. A 
total of 25 genes with 27 genotype comparisons were organized, 
which had a borderline statistical significance (P value of 0.05 to 
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Fig. 1. The ratio of noteworthy findings over statistically significant findings by FPRP and BFDP in the meta-analysis of 
observational studies. The y-axis is the ratio of noteworthy variants by FPRP (A): 0.76, 0.95, 0.5, 0.04 from left to right; and by 
BFDP (B): 0.89, 0.6, 0.48, 0.02. The x-axis is the range of P values. BFDP, Bayesian false-discovery probability; FPRP, false-positive 
report probability.
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0.29, 0.4. BFDP, Bayesian false-discovery probability; FPRP, false-positive report probability.
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5×10-8). Under FPRP estimation, 13 (48%) and 2 (7%) were 
assessed to be noteworthy at a prior probability of 10-3 and 
10-6 with a statistical power to detect an OR of 1.2. Moreover, 
13 (48%) and 2 (7%) were identified as noteworthy at a prior 
probability of 10-3 and 10-6 with a statistical power to detect an 
OR of 1.5. In terms of BFDP, 15 (56%) and 1 (4%) comparisons 
were found noteworthy at a prior probability of 10-3 and 10-6.

We found that the GWAS meta-analysis results were highly 
reliable because all variants under a P value of 5×10-8 were 
evaluated as noteworthy with FPRP and BFDP computations. 
The GWAS results with P<5×10-8 could be identically replicat-
ed in observational studies. In addition, of the 27 genotype 
comparisons that had borderline statistical significance, 13 (48%) 
were noteworthy under both Bayesian methods, suggesting 
that results with a P value of 0.05 to 5×10-8 may be genuine 
associations. To verify the results obtained from genetic analyses, 
both Bayesian approaches may have advantages, especially 
for the interpretation of results obtained from observational 
studies. When determining the results of GWAS with P values 
ranging between 0.05 and 5×10-8, statistical approaches other 
than single standard significance may be beneficial, and we 
were able to confirm significance in almost half of the genetic 
variants within this borderline significance range. Therefore, 
it is attractive to speculate that genetic variants with borderline 
significance require further analysis for a genuine association.4)

Noteworthy genetic variants in SLE and their functions are 
summarized in Table 2. Investigation of the sorted list of signi-
ficant genes identified a prominent representation of genes that 
have a role in interferon (IFN) signaling, which was in line with 
previous reports.23,24) These genes were IFIH1, IRF5, IRF8, and 
STAT4 from the observational studies and IFIH1, IRF5, IRF7, 
IRF8, PRDM1-ATG5, STAT4, ad TYK2 from GWAS. IFN-α, a 
type I IFN, is traditionally known to be concerned with a defense 
against viruses and its involvement in breaking self-tolerance via 
the activation of antigen-presenting cells after absorbing self-
materials,25) which explains some essential parts of the current 
understanding of SLE.26) In addition, the proportion of genes 
whose function is related to nuclear factor kappa B (NF-κB) 
signaling was also outstanding. NF-κB plays a critical role in 
proinflammatory processes through regulating the expression 
of tumor necrosis factor-α (TNF-α), toll-like receptors, and inter-

leukin 1 receptor.27) These were MECP2 and TNFAIP3 from 
observational studies and IKBKE, IRAK1, MECP2, SLC15A4, 
TNFAIP3, TNIP1, and UBE2L3 from GWAS. Other genes with 
relevance to the immune system such as complement activation, 
apoptosis, and neutrophil, monocyte, NK cell, and B- and T-cell 
signaling were significantly related to the genetic susceptibility 
loci for SLE.28)

Gene network analysis

As the bioinformatic open resources are overwhelming, we 
thought that using noteworthy genetic variants for gene network 
analyses with open source methods should derive a genuine 
etiopathology of the respective disease. Several databases have 
compiled data from experimental and computational sources, 
integrating extensive protein-protein interactions (PPIs) or 
gene-gene interactions. STRING (Search Tool for the Retrieval 
of Interacting Genes/Proteins) and GeneMANIA are repre-
sentative freely available databases that were constructed from 
various biological and literature sources. The utilization of these 
interactions among genes aids the understanding of the underly-
ing biological mechanisms as well as the hidden pathology of 
human disease associated with the genes.29) Since different data-
bases are constructed based on different biological evidence, the 
utilization of the appropriate network database is very critical 
for identifying meaningful interaction information. A recent 
interesting benchmarking study comparing the performance of 
different network databases in the context of virus-host interac-
tions and STRING databases revealed overall good performance 
for detecting known host factors for various human genes.30) In 
this review, we introduced the process of sorting out noteworthy 
variants from the known statistically significant variants; fur-
thermore, we applied the 2 representative databases STRING 
and GeneMANIA and genetic variants associated with SLE in our 
previous field synopsis4) to the STRING database to construct a 
PPI network.

1. GeneMANIA

The GeneMANIA database31) includes 1,800 networks cover-
ing 500 million gene-gene interactions and PPI from 9 organisms 

Table 1. Proportion of noteworthy gene variants by statistical approach and significance threshold

Meta-analyses
No. of SNP 

studies
P<0.05

FPRP values at prior probability
BFDP
0.001

BFDP
0.000001OR 1.2 OR 1.5

0.001 0.000001 0.001 0.000001

Observational studies 133 133 (100) 23 (17) 11 (8) 34 (26) 18 (14) 50 (38) 29 (22)

GWAS (P<5×10-8)a) 89 89 (100) 64 (100) 64 (100) 64 (100) 64 (100) 89 (100) 89 (100)

GWAS (5×10-8<P<0.05) 27 27 (100) 13 (48) 2 (7) 13 (48) 2 (7) 15 (56) 1 (4)

Values are presented as number (%).
SNP, single nucleotide polymorphism; FPRP, false-positive report probability; OR, odds ratio; BFDP, Bayesian false-discovery probability; 
GWAS, genome-wide association studies.
a)The noteworthiness of 25 comparisons was not available for FPRP among 89 genotype comparisons extracted from meta-analyses of 
GWAS with a P<5×10-8.
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Table 2. Noteworthy genetic variants and their functions

Study Gene
Variant

(RS number)
Ethnicity, study No. 

(types of study)
Comparison OR (95% CI) P value Function of genes

Bentham et al. 
201535)

ABHD6-PXK rs9311676 European 2 (MG) C<T 1.17 
(1.13–1.22)

3.06×10-14 ABHD6 gene codes for the abhydrolase domain-containing 
protein 6. ABHD6 catalyzes the hydrolysis of 2-arachi-
donylglycerol and takes part in the endocannabinoid signal ing 
regulation.36) PXK gene encodes a phox (PX) domain-con-
taining protein which may be involved in synaptic transmission 
and the ligand-induced internalization and degradation of 
epidermal growth factors. PXK also operates on the B-cell 
antigen receptor (BCR) and influences the rate of BCR 
internalization.37,38) 

Lessard et al. 
2016 39)

AHNAK2 rs1048257 Chinese 2 (MG) T<C 0.82 
(0.76–0.89)

8.66×10-7 AHNAK2 gene encodes a large nucleoprotein that may play a 
role in calcium signaling by associating with calcium channel 
proteins.38) 

Zhang et al. 
   201640)

ALOX5AP rs12876893 Asain 5 (MG) G<A 1.12 
(1.06–1.180)

6.20×10-5 ALOX5AP  gene encodes a protein which is required for 
leukotriene synthesis. ALOX5AP is expressed in airway leuko-
cytes in response to stimuli implicated in various inflammatory 
responses including asthma, arthritis and psoriasis.38,40) 

Molineros et al. 
201741)

ANKS1A rs2762340 Overall 9 (MG) G<A 0.87 
(0.84–0.90)

4.93×10-15 ANKS1A, also known as ODIN, a Src kinase that negatively 
regulates growth factor receptor signaling pathways. 
ANKS1Ainteracts with and is phosphorylated by Lck (lympho-
cyte-specific protein tyrosine kinase), a critical component of 
T-cell activation.41)

Bentham et al. 
201535)

ARID5B rs4948496 European 2 (MG) C<T 1.14 
(1.10–1.19)

1.04×10-10 The encoded protein forms a histone H3K9Me2 demethylase 
complex with PHD finger protein 2 and regulates the trans-
cription of target genes involved in adipogenesis and liver 
development. This gene also plays a role in cell growth and 
differentiation of B-lymphocyte progenitors.38) 

Molineros et al.
   201741)

ATG16L2 rs11235604 Asian 8 (MG) T<C 0.78
(0.71–0.85)

8.87×10-12 An autophagy-related gene associated with systemic lupus 
erythematosus (SLE), multiple sclerosis, and Crohn disease. 
ATG16L2 is involved in apoptosis and physically interacts with 
SLE locus ATG5.

Morris et al. 
   201642)

ATXN1 rs17603856 Overall 3 (MG) T<G 0.88 
(0.85–0.91)

3.27×10-12 ATXN1 binds RNA and several transcription factors, and is 
involved in transcriptional regulation.43) The diseased allele of 
ATXN1 with the expansion of CAG repeats is associated with 
spinocerebellar ataxia type 1.38)

Morris et al. 
   201642)

BACH2 rs597325 Overall 3 (MG) G<A 0.89 
(0.86–0.92)

4.03×10-12 A transcription regulator protein. BACH2 is expressed in primary 
B cells. BACH2 protein play important role as trans criptional 
activators or repressors.44) The superen hancer associated 
genes critical for T-cell biology are repressed by BACH2.45) 

Bentham et al. 
201535)

BANK1 rs10028805 European 2 (MG) G<A 1.20 
(1.15–1.25)

4.31×10-17 BANK1 encodes a protein adaptor that is predominantly ex-
pressed in B cells. It promotes LYN-mediated tyrosine phos-
phorylation of inositol 1,4,5-triphosphate receptors.46)

Lee et al. 
   201247)

BLK rs13277113 European 2 (MG) A<G 1.391 
(1.256–
1.540)

2.28×10-10 BLK gene encodes a nonreceptor tyrosine kinase of the Src 
family of proto-oncogenes that are typically involved in cell 
proliferation and differentiation. The protein has a role in 
B-cell receptor signaling and B-cell development.38)

Bentham et al. 
201535)

BLK rs2736340 European 2 (MG) T<C 1.29
(1.22–1.37)

6.28×10-20

Molineros et al. 
201741)

CCL22 rs223881 Overall 9 (MG) C<T 0.87
(0.84–0.90)

5.87×10-16 CCL22 is a Cys-Cys (CC) cytokine gene. The encoded cytokine 
displays chemotactic activity for monocytes, dendritic cells 
(DCs), natural killer cells, and chronically activated T lym-
phocytes. It binds to chemokine receptor CCR4.38)

Lee et al. 
   201548)

CD40 rs4810485 European 2 (MO) TT vs. 
TG+GG

0.339 
(0.205–
0.508)

1.7×10-8 The encoded protein of CD40 gene is a receptor on antigen-
presenting cells of the immune system and is essential for 
mediating a broad variety of immune responses including 
T-cell-dependent immunoglobulin class switching, memory 
B-cell development, and germinal center formation.38) 

Lessard et al. 
201149)

CD44 rs387619 European (MG) C<T 0.82 
(0.76–0.88)

1.46×10-8 The protein encoded by the CD44 gene is a cell-surface 
glycoprotein involved in cell-cell interactions, cell adhesion and 
migration. This protein participates in a wide variety of cellular 
functions including lymphocyte activation, recirculation and 
homing, hematopoiesis, and tumor metastasis.38)

Sheng et al. 
   2015 50)

CD44 rs2732547 Chinese 3 (MG) G<A 0.82 
(0.77–0.87)

1.55×10-11

Bentham et al. 
201535)

CD44 rs2732549 European 2 (MG ) T<C 1.24
 (1.19–1.29)

1.20×10-23

Lessard et al. 
201149)

CD44 rs2732552 European (MG) C<T 0.82 
(0.76–0.88)

1.82×10-9

Zhang et al. 
   201640)

CD80 rs2222631 Asain 5 (MG) A<G 0.86 
(0.81–0.91)

4.50×10-8 The protein encoded by the CD80 gene is a membrane receptor 
that is activated by the binding of CD28 or CTLA-4. The 
activated protein induces T-cell proliferation and cytokine 
production.38) 

Sheng et al. 
   201550)

CD80 rs6804441 Chinese 3 (MG) G<A 0.86 
(0.82–0.91)

5.90×10-4
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Table 2. Noteworthy genetic variants and their functions (Continued)

Study Gene
Variant

(RS number)
Ethnicity, study No. 

(types of study)
Comparison OR (95% CI) P value Function of genes

Bentham et al. 
   201535)

CFB rs1270942 European 2 (MG) G<A 2.28 
(2.15–2.42)

2.25×10-165 CFB gene encodes complement factor B, a component of the 
alternative pathway of complement activation.38)

Bentham et al. 
   201535)

CIITA-SOCS1 rs9652601 European 2 (MG) A<G 1.21 
(1.15–1.26)

7.42×10-17 CIITA gene encodes a protein with an acidic transcriptional 
activation domain, 4 LRRs (leucine-rich repeats) and a 
guanosine triphosphate binding domain. The protein acts as a 
positive regulator of class II major histocompatibility complex 
gene transcription.38) SOCS1 gene encodes a member of 
the signal transducer and activator of transcrip tion (STAT)-
induced STAT inhibitor (SSI) family, also known as suppressor 
of cytokine signaling. It takes part in a nega tive feedback loop 
to attenuate cytokine signaling.38) 

Bentham et al. 
201535)

CSK rs2289583 European 2 (MG) A<C 1.19 
(1.14–1.24)

6.22×10-15 The protein encoded by the CSK gene is involved in multiple 
pathways, including the regulation of Src family kinases. 
It plays an important role in T-cell activation through its 
association with the protein encoded by the protein tyro-
sine phosphatase, nonreceptor type 22 (PTPN22) gene. An 
intronic polymorphism (rs34933034) in this gene has been 
found to affect B-cell activation and is associated with SLE.38) 

Shojaa et al. 
201451)

CTLA-4 rs733618 Overall 8 (MO) TT vs. CC 2.32 
(1.62–3.32)

<0.001 CTLA-4 gene is a member of the immunoglobulin super family 
and encodes a protein which transmits an inhibitory signal to 
T cells.38)

Zhang et al. 
201452)

CXCR5 rs10892301 Asian 3 (MG) A<G 0.85 
(0.80–0.90)

2.51×10-8 CXCR5 gene encodes a multipass membrane protein that 
belongs to the CXC chemokine receptor family. This cytokine 
receptor is involved in B-cell migration into B-cell follicles of 
spleen and Peyer patches.38) 

Bentham et al. 
201535)

CXorf21 rs887369 European 2 (MG) A<C 1.15 
(1.10–1.21)

5.26×10-10 A protein coding gene of unknown function.53) 

Lessard et al. 
201639)

DOCK1 rs10901656 Asian 2 (MG) T<C 1.21 
(1.12–1.32)

9.56×10-6 DOCK1 gene encodes a member of the dedicator of cytokine-
sis protein family. Dedicator of cytokinesis proteins regulates 
the small GTPase Rac, thereby influencing several biological 
processes, including phagocytosis and cell migra tion.38)

Wang et al. 
201354)

ETS1 rs6590330 Caucasian 3 (MG) A<G 1.22 
(1.10–1.34)

9.8×10-5 ETS1 gene encodes for a transcription factor known to be 
involved in a wide range of immune functions, including 
Th17 cell development and terminal differentiation of B lym-
phocytes.55)

Bentham et al. 
201535)

ETS1-FLI1 rs7941765 European 2 (MG) T<C 1.14 
(1.10–1.19)

1.35×10-10 FLI1 gene encodes a transcription factor containing an ETS 
DNA-binding domain.38)

Lee et al. 
   201247)

FAM167A rs12680762 European 2 (MG) A<G 1.335 
(1.208–1.475)

1.45×10-8 FAM167A gene is a ubiquitously expressed gene of unknown 
function.

Bentahm et al. 
201535)

FCGR2A rs1801274 European 2 (MG) C<T 1.16 
(1.11–1.21)

1.04×10-12 FCGR2A gene encodes a cell-surface receptor found on 
phagocytic cells such as macrophages and neutrophils, and 
is involved in the process of phagocytosis and clearing of 
immune complexes.38) 

Zhu et al. 
    201656)

FCGR2B rs1050501 Overall 12 (MO) CC vs. 
CT+TT

1.754
(1.422–2.165)

1.61×10-7 FCGR2B is an immunoreceptor tyrosine-based inhibitory motif 
(ITIM)-containing receptor and it mediates both endo cytotic 
and apoptotic signaling on B cells and myelo monocytic cells. 

Zhu et al. 
   201656)

FCGR3A rs396991 Overall 26 (MO) TT vs. 
TG+GG

1.263 
(1.123–1.421)

9.62×10-5 FCGR3A gene is involved in the removal of antigen-antibody 
complexes from the circulation, as well as other antibody-
dependent responses. The encoded receptor is expressed on 
natural killer (NK) cells.38)

Lessard et al. 
201639)

FCHSD2-P2RY2 rs11235667 Asian 2 (MG) G<A 0.63 
(0.55–0.72)

6.67×10-11 FCHSD2 gene has been described as regulator of F-actin 
assembly through interactions with WAS (also known as 
WASP) and WASL (also known as N-WASP). WAS plays an 
important role in the migration of T cells through reorga-
nization of the actin cytoskeleton subsequent to interactions 
with dendritic or B cells. P2RY2 is a receptor for adenosine 
triphosphate (ATP) and uridine triphosphate (UTP) that acts 
as a sensor for the release of nucleotides by apoptotic cells. It 
is also known to induce CCL2 secretion in macrophages. 

Sheng et al. 
201550)

FLJ25996 rs9866504 Chinese 3 (MG) G<A 0.85 
(0.79–0.92)

6.44×10-2 No information

Sheng et al. 
201550)

GPM6A rs997779 Chinese 3 (MG) G<A 1.17 
(1.08–1.26)

4.48×10-2 GPM6A gene is abundant in all rat hippocampal subregions, 
and it localized to membrane protrusions (filopodia/spines) of 
primary hippocampal neurons. This gene has a role in neurite/
filopodium outgrowth and synapse formation. 

Lessard et al. 
201639)

GTF2IRD1 rs2267828 Asian 2 (MG) G<A 0.81 
(0.76–0.88)

6.46×10-8 The protein encoded by this gene contains 5 GTF2I-like repeats 
and each repeat possesses a potential helix-loop-helix (HLH) 
motif. It may interact with other HLH-proteins and function as 
a transcription factor or as a positive trans criptional regulator 
under the control of Retino blastoma protein. This gene plays 
a role in craniofa cial and cognitive development.38)
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Table 2. Noteworthy genetic variants and their functions (Continued)

Study Gene
Variant

(RS number)
Ethnicity, study No. 

(types of study)
Comparison OR (95% CI) P value Function of genes

Morris et al. 
201642)

GTF2IRD1-
GTF2I

rs73135369 Overall 3 (MG) C<T 1.32 
(1.23–1.42)

8.77×10-14 This gene encodes a phosphoprotein containing 6 charac teristic 
repeat motifs. The encoded protein binds to the initiator 
element (Inr) and E-box element in promoters and functions 
as a regulator of transcription.38)

Zhang et al. 
201557)

HCFC1 rs17422 Asian 2 (MG) T<C 0.75 
(0.71–0.80)

1.47×10-15 This gene is a member of the host cell factor family and 
encodes a protein with 5 Kelch repeats, a fibronectin-like 
motif, and 6 HCF repeats, each of which contains a highly 
specific cleavage signal. It is involved in control of the cell 
cycle and transcriptional regulation during herpes simplex 
virus infection.38) 

Niu et al. 
  201558)

HLA-DR3 Overall 17 (MO) DR3 1.88 
(1.58–2.23)

<0.001 Major histocompatibility complex, class II, DR beta 1 (HLA-DRB1 
gene).

The HLA-DRB1 locus is ubiquitous and encodes a very large 
number of functionally variable gene products (HLA-DR1 to 
HLA-DR17). HLA-DRB1 belongs to the HLA class II beta chain 
paralogs. It plays a central role in the immune system by 
presenting peptides derived from extracellular proteins. Class 
II molecules are expressed in antigen-presenting cells (APC: B 
lymphocytes, DCs, macrophages).38)

Niu et al. 
  2015 58)

HLA-DR11 Overall 15 (MO) DR11 0.72
(0.60–0.85)

<0.0001

Castaño-
Rodríguez, 

   et al. 200859)

HLA-DR2 Latin American 9 
(MO)

DR2 1.754 
(1.404–2.191)

0

Lee et al. 
   201560)

HLA-G rs1063320 Overall 4 (MO) G vs. C 1.367 
(1.158–1.613)

2.2×10-5 HLA-G belongs to the HLA class I heavy chain paralogs.38) 

Nonclassic HLA-G class I molecules inhibit natural killer cell 
function.61)

Kim et al. 
   201262)

ICAM1–ICAM4–
ICAM5

rs3093030 Overall 4 (MO) A vs. G 1.16 
(1.11–1.22)

4.88×10-10 ICAM1 gene encodes a cell-surface glycoprotein which is 
mainly expressed in the vascular endothelium, macrophages 
and lymphocytes, and plays a role in immunological events 
including extravasation and T-cell-mediated responses. 
ICAM4 gene encodes the Landsteiner-Wiener blood 
group antigen(s) that belongs to the immunoglobulin (Ig) 
superfamily. It contains 2 Ig-like C2-type domains and binds 
to the leukocyte adhesion LFA-1 protein. ICAM5 is prefer-
entially expressed in brain. 

Bentham et al. 
201535)

IFIH1 rs2111485 European 2 (MG) C<G 1.15
(1.11–1.20)

1.27×10-11 IFIH1 gene encodes a DEAD box protein that is upregulated in 
response to treatment with beta-interferon and a protein 
kinase C-activating compound, mezerein.

The encoded protein participates in the activation of apoptosis 
in viral dsRNA infected cells, modulating type 1 interferon 
(IFN) response, production of proinflammatory cytokines and 
apoptotic processes.63)

Morris et al. 
201642)

IKBKE rs2297550 Overall 3 (MG) G<C 1.16
(1.11–1.21)

1.31×10-11 IKBKE is a noncanonical I-kappa-B kinase that is essential for 
regulating antiviral signaling pathways. 

Bentham et al. 
201535)

IKZF1 rs4917014 European 2 (MG) G<T 1.18 
(1.13–1.24)

6.39×10-14 IKZF1 gene encodes a transcription factor associated with 
chromatin remodeling. It functions as a regulator of lympho-
cyte differentiation.38) 

Bentham et al. 
201535)

IKZF2 rs3768792 European 2 (MG) G<A 1.24 
(1.17–1.31)

1.21×10-13 IKZF2 gene encodes a member of the Ikaros family of zinc-
finger proteins that is involved in the regulation of lymphocyte 
development.38)

Bentham et al. 
201535)

IKZF3 rs2941509 European 2 (MG) T<C 1.35 
(1.22–1.49)

7.98×10-9 IKZF3 gene encodes a member of the Ikaros family of zinc-
finger proteins. This gene product is a transcription 
factor that is important in the regulation of B-lymphocyte 
proliferation and differentiation.38) 

Bentham et al. 
201535)

IL-10 rs3024505 European 2 (MG) A<G 1.17 
(1.11–1.24)

4.64×10-9 Interleukin (IL)-10 is produced primarily by monocytes and 
to a lesser extent by lymphocytes. It down-regulates the 
expression of Th1 cytokines, major histocompatibility com-
plex (MHC) class II Ags, and costimulatory molecules on 
macrophages. It enhances B-cell survival, proliferation, and 
antibody production. It can block NF-kappa B activity, and 
is involved in the regulation of the Janus kinase (JAK)-STAT 
signaling pathway.38) 

Bentham et al. 
201535)

IL-12A rs564799 European 2 (MG) C<T 1.14 
(1.09–1.18)

1.54×10-9 IL-12A acts on T and natural killer cells. It is required for the 
T-cell-independent induction of IFN-gamma, and is im portant 
for the differentiation of both Th1 and Th2 cells.38) 

Qi et al. 
   2015 64)

IL-21 rs907715 Overall 7 (MO) GG+GA vs. 
AA

1.20 
(1.09–1.31)

0 IL-21 plays a role in both the innate and adaptive immune 
responses by inducing the differentiation, proliferation and 
activity of multiple target cells including macrophages, natural 
killer cells, B cells and cytotoxic T cells.38) 

Webb et al. 
200965)

IL-21R rs3093301 Overall 2 (MO) A vs. G 1.16 
(1.08–1.25)

1.0×10-4 IL-21R gene encodes a cytokine receptor for IL-21. It trans-
duces the growth promoting signal of IL21, and is impor tant 
for the proliferation and differentiation of T cells, B cells, and 
NK cells.38) 
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Study Gene
Variant

(RS number)
Ethnicity, study No. 

(types of study)
Comparison OR (95% CI) P value Function of genes

Katkam et al. 
201766)

IL-6 rs1800797 Overall 13 (MO) G vs. C 1.36 
(1.22–1.53)

0.00 IL-6 functions in inflammation and the maturation of B cells. In 
addition, it has been shown to be an endogenous pyrogen 
capable of inducing fever in people with autoimmune diseases 
or infections.38) 

Zhang et al. 
201557)

IRAK1 rs1059702 Asian 2 (MG) C<T 0.71 
(0.67–0.76)

2.40×10-18 IRAK1 gene encodes the interleukin-1 receptor-associated 
kinase 1. It is partially responsible for IL1-induced 
upregulation of the transcription factor NF-kappa B.38) 

Bentham et al. 
201535)

IRF5 rs10488631 European 2 (MG) C<T 1.92 
(1.81–2.03)

9.37×10-110 Proteins of the interferon regulatory factor (IRF) family bind to 
the IFN-stimulated response element and regulate expression 
of genes stimulated by type I IFNs, namely IFN-alpha and 
IFN-beta. IRF family proteins also control expression of IFN-
alpha and IFN-beta-regulated genes that are induced by viral 
infection.38) 

Lee et al. 
   2012 47)

IRF5 rs729302 European 2 (MG) C<A 0.774 
(0.707–0.848)

3.93×10-8

Bentham et al. 
   201535)

IRF7 rs12802200 European 2 (MG) A<C 1.23 
(1.15–1.31)

8.81×10-10

Bentham et al. 
   201535)

IRF8 rs11644034 European 2 (MG) A<G 1.25 
(1.19–1.32)

9.58×10-18

Sheng et al. 
   201550)

IRF8 rs2934498 Chinese 2 (MG) G<A 1.25 
(1.16–1.34)

4.97×10-9

Bentham et al. 
   201535)

ITGAM rs34572943 European 2 (MG) A<G 1.71 
(1.61–1.81)

3.39×10-76 ITGAM gene encodes the integrin alpha M chain. It is impor tant 
in the adherence of neutrophils and monocytes to stimulated 
endothelium, and also in the phagocytosis of complement 
coated particles.38) 

Morris et al. 
   201642)

JAK2 rs1887428 Overall 3 (MG) G<C 1.16
(1.12–1.20)

2.19×10-17 JAK2 encodes a tyrosine kinase involved in a specific subset of 
cytokine receptor signaling pathways. It has been found to 
be associated with the prolactin receptor and is required for 
responses to gamma interferon.38) 

Bentham et al. 
201535)

JAZF1 rs849142 European 2 (MG) C<T 1.14 
(1.10–1.19)

8.61×10-11 JAZF1 gene encodes a nuclear protein that functions as a 
transcriptional repressor.38) 

Zhang et al. 
201557)

L1CAM rs4898457 Asian 2 (MG) G<A 0.87 
(0.82–0.92)

2.84×10-6 L1CAM gene encodes an axonal glycoprotein belonging to the 
immunoglobulin supergene family. This cell adhe sion molecule 
plays an important role in nervous system development, 
including neuronal migration and differ entiation.38)

Morris et al. 
201642)

LBH rs17321999 Overall 3 (MG) A<C 0.83 
(0.79–0.87)

2.22×10-16 LBH (limb bud and heart development) is a key gene re gulator 
which could act as a transcriptional coactivator in the mitogen
‐activated protein kinase signaling pathway to mediate 
cellular functions. Several SNP within LBH are associated with 
rheumatoid arthritis and SLE.67) 

Morris et al. 
201642)

LBH rs7579944 Overall 3 (MG) C<T 0.90 
(0.87–0.93)

1.41×10-9

Morris et al. 
201642)

LPP-TPRG1-AS1 rs6762714 Overall 3 (MG) C<T 1.16 
(1.12–1.20)

4.00×10-15 LPP gene encodes a protein localizes to the cell periphery in 
focal adhesions and may be involved in cell-cell adhesion 
and cell motility. It also functions as a transcriptional coac-
tivator.38) 

Wang et al. 
201354)

LRRC18-
WDFY4A

rs1913517 Caucasian 3 (MG) A<G 1.16 
(1.08 –1.23)

7.8×10-6 Both LRRC18 and WDFY4 are of unknown function.

Bentham et al. 
201535)

LYST rs9782955 European 2 (GWAS) T<C 1.16 
(1.11–1.22)

1.25×10-9 LYST gene encodes a protein that regulates intracellular 
protein trafficking in endosomes, and may be involved in 
pigmentation.38) No known immune function. Studies have 
revealed that LYST functions in lysosomal trafficking in many 
immune cells, a process that is also crucial in the activation of 
TLRs by self-nucleic acids in SLE.68) 

Lee et al. 
   201269)

MBL2 rs1800450 Overall 21 (MO) B vs. A 1.298 
(1.154–1.459)

1.49×10-5 MBL2 gene encodes the soluble mannose-binding lectin or 
protein. It recognizes mannose and N-acetylglucosamine 
on many microorganisms, and is capable of activating the 
classical complement pathway.38) 

Bentham et al. 
201535)

MECP2 rs1734787 European 2 (MG) C<A 1.31 
(1.22–1.40)

1.78×10-15 MECP2 is a dichotomous transcriptional regulator that either 
activates or represses gene expression.70)

Zhang et al. 
201557)

MECP2 rs2734647 Asian 2 (MG) C<T 0.72 
(0.67–0.76)

5.22×10-18

Bentham et al. 
201535)

miR-146a rs2431697 European 2 (MG) C<T 1.26 
(1.21–1.31)

8.01×10-28 MicroRNA 146a can repress type 1 IFN pathway through 
targeting TNF receptor-associated factor 6, IL-1 receptor-
associated kinase, IFN regulator factor 5 (IRF5), and STAT-
1.71) 

Molineros et al. 
201741)

MYNN rs10936599 Overall 9 (MG) C<T 1.14
(1.10–1.18)

1.92×10-13 MYNN encodes the zinc-finger transcription factor myo neurin, 
which regulates neuromuscular junctions and telomere 
length.41) 

Zhang et al. 
201557)

NAA10 rs1557501 Asian 2 (MG) C<T 0.83 
(0.79–0.88)

7.84×10-10 NAA10 gene encodes an N-terminal acetyltransferase that 
functions as the catalytic subunit of the major amino-terminal 
acetyltransferase A complex.38) 

Zhang et al. 
201557)

NAA10 rs2071128 Asian 2 (MG) G<A 0.81 
(0.77–0.86)

2.19×10-13
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Bentham et al. 
201535)

NADSYN1 rs3794060 European 2 (MG) T<C 1.23 
(1.18–1.29)

1.32×10-20 This gene encodes a synthetase that catalyzes the final step in 
the biosynthesis of Nicotinamide adenine dinucleotide. 

Zhang et al. 
201557)

Near-VCX2 rs5978830 Asian 2 (MG) A<G 0.84
 (0.80–0.89)

1.00×10-8 This gene belongs to the VCX/Y  gene family, which has 
multiple members on both X and Y chromosomes that are 
expressed exclusively in male germ cells. The VCX gene 
cluster is polymorphic in terms of copy number; different 
individuals may have a different number of VCX genes. This 
gene contains 2 copies of a 30 nt tandem repeat. Deletion of 
a nearby member of this family was implicated in cognitive 
disability.38) 

Sheng et al. 
201550)

NRXN1 rs2048979 Chinese 3 (MG) G/A 0.87 
(0.82–0.91)

1.35×10-3 Neurexins are cell-surface receptors that bind neuroligins to 
form Ca(2+)-dependent neurexin/neuroligin complexes at 
synapses in the central nervous system. This complex is 
required for efficient neurotransmission and is involved in the 
formation of synaptic contacts.38) 

Lee et al. 
   201772)

OPN rs11229919 Asian 2 (MO) C vs. T 2.070 
(1.570–2.730)

2.5×10-7 The protein encoded by this gene is involved in the attachment 
of osteoclasts to the mineralized bone matrix. It is also a 
cytokine that upregulates expression of interferon-gamma 
and interleukin-12.38)

Zhang et al. 
201452)

PHLDB1 rs11603023 Asian 3 (MG) T<C 1.20 
(1.12–1.27)

1.25×10-8 PHLDB1 is an insulin responsive protein that enhances AKT 
activation. AKT signaling pathway plays an important role in 
cellular proliferation and growth signaling. Abnormal acti-
vation of the AKT signaling pathway was found in peripheral 
blood T cells from individuals with SLE.52) 

Bentham et al. 
201535)

PLD2 rs2286672 European 2 (MG) T<C 1.25 
(1.16–1.35)

2.93×10-9 The protein encoded by this gene catalyzes the hydrolysis 
of phosphatidylcholine to phosphatidic acid and choline. 
This protein localizes to the peripheral membrane and may 
be involved in cytoskeletal organization, cell cycle control, 
transcriptional regulation, and/or regulated secretion.38)

Tan et al. 
   201173)

PPP2CA rs10491322 Overall 4 (MO) G vs. A 1.2 
(1.07–1.27)

3.8×10-4 PPP2CA gene encodes the phosphatase 2A catalytic sub unit. 
Protein phosphatase 2A is implicated in the negative control 
of cell growth and division.38)

Tan et al. 
   201173)

PPP2CA rs7704116 Overall 4 (MO) A vs. G 1.3 
(1.14–1.31)

3.8×10-7

Bentham et al. 
   201535)

PRDM1-ATG5 rs6568431 European 2 (MG) A<C 1.21 
(1.15–1.27)

5.04×10-14 PRDM1 gene encodes a protein that acts as a repressor of 
beta-interferon gene expression.38) The encoded protein by 
ATG5 gene is involved in several cellular processes, including 
autophagic vesicle formation, mitochondrial quality control 
after oxidative damage, negative regulation of the innate 
antiviral immune response, lymphocyte development 
and proliferation, MHC II antigen presentation, adipocyte 
differentiation, and apoptosis.38) 

Bentham et al. 
201535)

PTPN22 rs2476601 European 2 (MG) T<C 1.43 
(1.34–1.53)

1.10×10-8 PTPN22 gene encodes a lymphoid-specific intracellular 
phosphatase that associates with the molecular adapter 
protein CBL and may be involved in regulating CBL function in 
the T-cell receptor signaling pathway.38) 

Morris et al. 
201642)

PTPRC rs34889541 Overall 3 (MG) A<G 0.81 
(0.76–0.86)

2.44×10-12 The protein encoded by this gene is a member of the pro-
tein tyrosine phosphatase (PTP) family. PTPs are known 
to be signaling molecules that regulate a variety of cellular 
processes including cell growth, differentiation, mitosis, and 
oncogenic transformation. PTP is also an essential regulator 
of T- and B-cell antigen receptor signaling.38) 

Ramos et al. 
201174)

PXK rs6445975 Overall 4 (MG) G<T 1.20
(1.13–1.27)

5.27×10-9 This gene encodes a phox (PX) domain-containing protein 
which may be involved in synaptic transmission and the 
ligand-induced internalization and degradation of epidermal 
growth factors.38) 

Bentham et al. 
201535)

RAD51B rs4902562 European 2 (MG) A<G 1.14 
(1.09–1.19)

6.15×10-10 RAD51 family members are evolutionarily conserved pro teins 
essential for DNA repair by homologous recombina tion. 
Overexpression of this gene was found to cause cell cycle 
G1 delay and cell apoptosis, which suggested a role of this 
protein in sensing DNA damage.38) 

Molineros et al. 
201741)

RNASEH2C rs1308020 Overall 9 (MG) T<C 0.84
(0.81–0.88)

2.96×10-19 RNASEH2C encodes subunit C of the human ribonuclease H2 
enzyme complex that trims RNA-DNA duplexes. 

Morris et al. 
201642)

RNASEH2C rs494003 Overall 3 (MG) A<G 1.14 
(1.09–1.19)

5.81×10-9

Bentham et al. 
201535)

SH2B3 rs10774625 European 2 (MG) A<G 1.13
(1.08–1.18)

4.09×10-9 The encoded protein is a key negative regulator of cytokine 
signaling and plays a critical role in hematopoiesis.38) Func-
tional analysis indicated that it inhibits the activation of NFAT 
in stimulated T cells.75) 

Bentham et al. 
201535)

SLC15A4 rs1059312 European 2 (MG) G<A 1.17
(1.12–1.21)

1.48×10-13 SLC15A4 belongs to a superfamily of proton-coupled oligo-
peptide transporters.76) Kobayashi et al.77) (2014) found that 
B-cell-derived Slc15a4 was crucial for Tlr7 (300365)-triggered 
type I interferon (e.g., IFNA) and autoanti body production in a 
mouse model of lupus (SLE). 
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Bentham et al. 
201535)

SMG7-NCF2 rs17849501 European 2 (MG) T<C 2.10
(1.95–2.26)

3.45×10-88 SMG7 gene encodes a protein that is essential for nonsense-
mediated mRNA decay; a process whereby transcripts 
with premature termination codons are targeted for rapid 
degradation by a mRNA decay complex. NCF2 gene encodes 
neutrophil cytosolic factor 2, the cytosolic subunit of the 
multiprotein nicotinamide adenine dinucleotide phosphate 
oxidase complex found in neutrophils. It produces a burst of 
superoxide which is delivered to the lumen of the neutrophil 
phagosome.38) 

Lee et al. 
   201247)

STAT4 rs10931481 European 2 (MG) A<G 1.312 
(1.194–1.442)

1.74×10-8 STAT4 encodes a member of the STAT family of transcrip-
tion factors. In response to cytokines and growth factors, it 
acts as transcription activator. This protein is essential for 
mediating responses to IL12 in lymphocytes, and regulating 
the differentiation of T helper cells.38) 

Bentham et al. 
201535)

STAT4 rs11889341 European 2 (MG) T<C 1.73 
(1.65–1.81)

5.59×10-122

Lee et al. 
   201247)

STAT4 rs7574865 European 2 (MG) T<G 1.477 
(1.335–1.634)

4.06×10-14

Bentham et al.
   201535)

TCF7-SKP rs7726414 European 2 (MG) T<C 1.45 
(1.32–1.58)

4.44×10-16 TCF7 is a T-cell-specific transcription factor that regulates the 
expression of CD3. plays a critical role in natural killer cell and 
innate lymphoid cell development.38) 

Lee et al. 
   201678)

TLR7 rs3853839 Asian 3 (MO) allele 2 vs. 
allele 1

0.773 
(0.725–0.823)

<1.0×10-9 The protein encoded by this gene is a member of the Toll-like 
receptor family which plays a fundamental role in pathogen 
recognition and activation of innate immunity.38) 

Zhang et al. 
201557)

TMEM187 rs2266888 Asian 2 (MG) G<A 0.76 
(0.72–0.81)

8.20×10-15 This gene consists of 2 exons and encodes a multipass mem-
brane protein. An alternatively spliced transcript variant 
encoding the same protein has been found, but its biological 
validity is not determined.38) 

Zhang et al. 
201557)

TMEM187 rs6571303 Asian 2 (MG) C<T 0.80 
(0.76–0.84)

3.06×10-13

Sheng et al. 
201550)

TMEM39A rs12494314 Chinese 3 (MG) C<T 0.84 
(0.80–0.89)

1.01×10-9 The TMEM39A-associated coding SNP (rs1132200) results in 
an amino acid change from alanine to threonine at position 
487 of the protein. Although almost no biological data have 
been published suggesting its relevance to SLE, it has been 
found to be associated with multiple sclerosis.79) 

Bates et al. 
200980)

TNFAIP3 rs5029939 Caucasian 2 (MG) G<T 2.09 
(1.68–2.60)

1.67×10-14 The tumor necrosis factor alpha inducible protein 3 (TNFAIP3) 
encodes the ubiquitin-modifying enzyme A20 and is an 
inhibitor of nuclear factor-kB activity in several signaling 
pathways, including those of TNF and Toll-like receptors. 
Also, it is required for the negative regulation of inflammatory 
responses.81)

Bentham et al. 
201535)

TNFAIP3 rs6932056 European 2 (MG) C<T 1.83 
(1.65–2.02)

1.97×10-31

Ramos et al. 
201174)

TNFSF4 rs10798269 Overall 4 (MG) A<G 0.83 
(0.78–0.88)

4.04×10-10 TNFSF4 gene encodes a cytokine of the TNF ligand family. The 
encoded protein functions in T-cell APC interactions and 
mediates adhesion of activated T cells to endothelial cells.38) 

Sheng et al. 
201550)

TNFSF4 rs1418190 Chinese 2 (MG) C<T 0.81 
(0.75–0.87)

1.08×10-8

Sheng et al. 
201550)

TNFSF4 rs4916219 Chinese 2 (MG) A<G 0.80 
(0.75–0.86)

7.77×10-9

Bentham et al. 
201535)

TNFSF4 rs704840 European 2 (MG) G<T 1.22 
(1.17–1.27)

3.12×10-9

Yang et al. 
201782)

TNF-α rs1800629 Overall 41 (MO) A vs. G 1.70
(1.46–1.98)

<0.001 TNF is a pleiotropic cytokine that produces different stimuli 
in various physiological and pathological conditions. TNF 
contributes importantly to the development of T cells, B cells, 
and DCs.47) 

Bentham et al. 
201535)

TNIP1 rs10036748 European 2 (MG) C<T 1.38 
(1.32–1.45)

1.27×10-45 TNIP1 gene encodes an A20-binding protein which plays 
a role in autoimmunity and tissue homeostasis through 
the regulation of nuclear factor kappa-B activation.38) 

Wang et al. 
201354)

TNIP1 rs7708392 Caucasian 3 (MG) C/G 1.29 
(1.17–1.44)

1.2×10-6

Lee et al. 
201247)

TNPO3 rs12531711 European 2 (MG) G<A 1.593 
(1.403–1.808)

6.41×10-13 TNPO3 is a nuclear import receptor for serine/arginine-
rich (SR) proteins, which are essential precursor-mRNA 
splicing factors.83) 

Kurreeman 
   et al. 201084)

TRAF1-C5 rs10818488 Overall 3 (MG) A 1.22 
(1.12–1.31)

1.02×10-6 TRAF1 is involved in the negative regulation of T-cell 
proliferation and serves as an essential effector of the 
TNF signaling cascade. C5 is known to be a factor in the 
complement cascade and may increase susceptibility to 
autoimmune and inflammatory disease.85)
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(Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Droso-
phila melanogaster, Escherichia coli, Homo sapiens, Mus musculus, 
Rattus norvegicus, and Saccharomyces cerevisiae). It provides a 
comprehensive compiled network from hundreds of different 
sources such as coexpression, genetic interactions, colocalization 
information, and shared protein domains. GeneMANIA utilizes 
linear regression models to combine differ ent functional asso-
ciation networks from multiple data sources and Gaussian field 
label propagation methods are applied to predict the gene func-
tion based on composite functional networks. The combined 
edge scores are calculated as the weighted sum of scores by em-

phasizing the directly connected genes.

2. STRING database

The STRING 9.1 network database32) is one of the largest 
databases of direct (physical) PPI and indirect (functional) inter-
actions constructed from various data sources. The STRING 
database covers 9.6 million proteins from 2,031 differ ent orga-
nisms and incorporates PPI information from a number of 
known databases, such as Reactome, KEGG pathways, HPRD, 
BioGrid, and MINT as well as automated text mining including 
PubMed abstracts and OMIM database. It also in cludes com-

Table 2. Noteworthy genetic variants and their functions (Continued)

Study Gene
Variant

(RS number)
Ethnicity, study No. 

(types of study)
Comparison OR (95% CI) P value Function of genes

Namjou et al. 
201286)

TRAF6 rs4755453 Overall 4 (MO) C vs. G 0.88 
(0.83–0.94)

4.73×10-5 TRAF6 encodes an adaptor molecule that has a central 
role in the nuclear factor NF-κB activation pathway. 
It regulates inflammation, DC development, thymic 
selection and regulatory T-cell production as well as 
osteoclast formation.

Namjou et al. 
201286)

TRAF6 rs5030437 Overall 4 (MO) A vs. G 0.88 
(0.83–0.94)

7.85×10-5

Namjou et al. 
201286)

TRAF6 rs5030445 Overall 4 (MO) A vs. G 0.88 
(0.83–0.94)

1.31×10-4

Namjou et al. 
201286)

TRAF6 rs5030472 Overall 4 (MO) A vs. G 0.85 
(0.77–0.92)

4.75×10-4

Bentham et al. 
201535)

TYK2 rs2304256 European 2 (MG) A<C 1.24 
(1.17–1.31)

3.50×10-13 TYK2 gene encodes a member of the tyrosine kinase and, 
more specifically, the JAKs protein families. This protein 
associates with the cytoplasmic domain of type I and 
type II cytokine receptors and promulgate cytokine 
signals by phosphorylating receptor subunits. It is also 
component of both the type I and type III interferon 
signaling path ways.38) 

Diaz-Gallo et al. 
201387)

UBASH3a rs9976767 Overall 2 (MO) G vs. A 1.23 
(1.11–1.37)

2.4×10-4 UBASH3 gene encodes one of 2 family members belong ing 
to the T-cell ubiquitin ligand family. Both family members 
can negatively regulate T-cell signaling.38)

Ramos et al. 
201174)

UBE2L3 rs181359 Overall 4 (MG) T<C 1.23 
(1.15–1.33)

1.15×10-9 The modification of proteins with ubiquitin is an impor-
tant cellular mechanism for targeting abnormal or short-
lived proteins for degradation. This gene encodes a 
member of the E2 ubiquitin-conjugating enzyme family. 
It participates in the ubiquitination of p53, c-Fos, and the 
NF-kB precursor p105 in vitro.38) UBE2L3 participates 
in ubiquitylation and has a key role in the regulation of 
innate and adaptive immune systems.88) 

Bentham et al. 
201535)

UBE2L3 rs7444 European 2 (MG) T<C 1.27 
(1.21–1.33)

1.84×10-22

Bentham et al. 
201535)

UHRF1BP1 rs9462027 European 2 (MG) A<G 1.14 
(1.09–1.19)

7.55×10-9 UHRF1 binding protein 1

Sheng et al. 
201550)

ULK3 rs881536 Chinese 2 (MG) A/C 1.16 
(1.07–1.23)

5.78×10-3 The kinase domain of ULK3 was required for reporter 
activation. ULK3 showed autophosphorylation activity, 
and it showed serine/threonine kinase activity toward 
GLI2, with lower kinase activity toward GLI1 and GLI3.89) 

Zhou et al. 
201490)

VDRr rs2228570 Overall 6 (MO) F vs. F 0.75 
(0.65–0.86)

<0.0001 VDRr  gene encodes vitamin D3 receptor, which is a 
member of the nuclear hormone receptor superfamily 
of ligand-inducible transcription factors. Downstream 
targets of vitamin D3 receptor are principally involved 
in mineral metabolism, though this receptor regulates 
a variety of other metabolic pathways, such as those 
involved in immune response and cancer.38) 

Bentham et al. 
201535)

WDFY4 rs2663052 European 2 (MG) G<A 1.16 
(1.10–1.22)

5.25×10-9 WDFY4 is a huge protein with unknown function but is 
predominantly expressed in primary and secondary 
immune tissues. 

Zhang et al. 
201591)

YDJC rs2298428 Overall 3 (MG) T<C 1.23
(1.16–1.3)

1.31×10-11 The role of the YDJC gene is currently largely unknown.88) 

Morris et al. 
201642)

ZFP90 rs1170426 Overall 3 (MG) C 1.12 
(1.08–1.17)

2.24×10-8 ZFP90 gene encodes a member of the zinc-finger pro tein 
family that modulates gene expression. The encod ed 
protein derepresses the transcription of certain fetal 
cardiac genes and may contribute to the genetic repro-
gramming that occurs during the development of heart 
failure.38) 

OR, odds ratio; CI, confidence interval; MG, meta-analysis of genome-wide association studies; MO, meta-analysis of observation studies.



www.e-cep.org https://doi.org/10.3345/2020.00633 219

4. PPI network for SLE

Here we constructed the PPI network with genes mapping 
to the compiled reported genetic variants of SLE. Fig. 3A repre-
sents the PPI networks with genes having genetic variants with 
statistical significance from observational studies. Among the 
135 genetic variants mapping to 79 genes, 54 genes revealed 846 
interactions between them and IL-6, TP53, IL-10, ITGAM, and 
NFKB1 were identified as strong hub nodes. In addition, TRAF6, 
IRF5, ITGAM, TNFAIP3, and BLK were identified as critical 
genes having more than 4 reported genetic variants in SLE, 
which shows a strong association of such genes with SLE. Fig. 
3B and 3C also show the PPI networks with statistically signifi-
cant and borderline genes from GWAS studies (i.e., P<5×10-8, 
5×10-8<P<0.05), respectively. TNFSF4, CD44, STAT4, and 
TNAFAIP2 also showed a strong association with SLE from 
GWAS studies. Moreover, PTPRC, STAT4, and IL-10 also reveal-
ed strong hubness in the PPI network.

Next, we integrated these PPI networks with the genes mapp-
ing to overall genetic variants of SLE from 3 criteria. As shown in 
Fig. 4, genes from observational studies, GWAS with 2 different 
P values, are closely connected within the PPI network. Many 
genes have genetic variants identified from at least 2 studies 
(i.e., orange, green, and purple nodes). Among the 148 genes, 
97 revealed 1,554 PPI. Interestingly, TP53, PTPRC, NFKB1, IL-
6, IL-10, and STAT4 have more than 60 interactions in the PPI 
network and IL-10, STAT4, ITGAM, FCGR2A, and PTPN22 are 
also identified as genes having genetic variants in SLE from both 
observational and GWAS.

Discussion

In this review, we provided general concepts for applying 
Bayesian methods and gene network analyses to interpret genetic 

putationally predicted PPI by utilizing ortholog information 
between different species. The STRING database provides the 
PPI score using a naïve Bayesian algorithm to combine different 
scores from different biological evidence with a correction for 
random observation probability of interactions. Thus, the com-
bined STRING edge score is used to indicate strong confi dence 
for such PPI.

3. Construction of PPI networks using the STRING database

In our study, we used the STRING database to identify the PPI 
associated with gene mapping to genetic variants of SLE. First, 
our gene lists represented by gene symbol were converted to 
Ensembl protein identifiers using mapping information from the 
NCBI ftp server. Some of the gene symbols were preprocessed 
for conversion to official gene symbols before Ensembl ID map-
ping due to their ambiguity. Based on given Ensembl pro tein 
identifiers and the minimum PPI score, each PPI is extracted 
from the STRING databases. Depending on interests, we also 
extracted the closely associated genes with current gene lists 
using the Random Walk with Restart Algorithm,33) where func-
tional closeness of 2 gene lists is represented by an XD score 
using the STRING database. We applied our in-house program 
written with Perl and C. Once the functionally related genes 
are selected, Cytoscape,34) which is a free software package for 
visualizing, modeling, and analyzing molecular and genetic inter-
action networks, is used for network visualization. To import the 
PPI file into Cytoscape, users must prepare the network input file 
constructed from at least 3 columns: source node, interaction 
type, and target node. Edge attributes such as interaction score 
can also be imported into the network. The node property file 
can be prepared to indicate any property of each gene/proteins 
such as name, function, and node type (i.e., node data source). 
These 2 files (i.e., network file, node property file) were imported 
into Cytoscape for the visualization.

A B C
Fig. 3. PPI network with genes mapping to the statistically significant genetic variants. (A) Statistically significant genes from observational studies 
(T1: P<0.05), (B) statistically significant genes (T2: P<5×10-8) from GWAS, (C) statistically significant genes at the borderline (T3: 5×10-8<P<0.05) from 
GWAS. Node size represents the number of interactions, while edge width represents the PPI score from the STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) databases. The width of interactions shows the strength of the interactions mapping to the STRING score. PPI, protein-
protein interactions; GWAS, gene-wide association studies.
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epidemiology results. The Bayesian approach is unfamiliar in 
genetics and the need for filtering true-positive or “noteworthy” 
genetic variants is unavoidable due to the enlarging amount of 
research data. Although a meta-analysis provides one of the 
highest levels of evidence within research in the medical field, 
different meta-analyses from different groups must be integrated 
and rehighlighted. We refined scattered positive data of meta-
analyses in SLE with discovering false-positive results using 
Bayesian approaches, FPRP and BFDP, consequently suggesting 
a comprehensive PPI for the disease.

The Bayesian approach and its value depend on the prior 
probabilities, the calculation of power (1-β), and the probability 
of type I error (α). FPRP has been criticized for its heuristic 
derivation of α and 1-β as P0(t) and Pδ(t), for which P0(t) is the 
probability of observing a value greater than |t| or less than -|t| 
under the null hypothesis, versus Pδ(t) under the alternative; in 
other words, α and 1-β are pre-study quantities as properties of a 
test, while P0(t) and Pδ(t) are post-study parameters,22) in fact, not 
related to the test genuine parameters. Also, FPRP calculates its 
likelihood with its tail-area; thus, information is lost compared 
to BFDP, in which the exact ratio of the probability densities 
in the indicated point is calculated. Still, both assessments are 
recommended in a study to determine the true impact of the 
discovery.

Our gene network construction with genes having noteworthy 
genetic variants found sound PPI in SLE. The hub genes with 
more than 50 interactions were PTPRC, TP53, NFKB1, IL6, 
STAT4, IL10, ITGAM, TLR7, IFNG, IL1B, FCGR2A, JAK2, 
CD40, FCGR3A, PTPN22, RANTES, ICAM1, IRAK1, FCGR2B, 
CD80, IL18, and TNFAIP3.

The PPI construction using the STRING database provides 

insight for further wet lab-based research. On the other hand, 
although observational studies or GWAS elicited statistically 
significant genetic variations, they might not reveal the actual 
biological mechanism until epigenetic or molecular changes are 
proven. To overcome this hurdle, a combination analysis of gene 
expression and the matching SNP profile may be the way for-
ward for discovering the disease etiology.
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