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Review article

Low-grade epilepsy-associated neuroepithelial tumors (LEATs) 
are responsible for drug-resistant chronic focal epilepsy, and 
are the second-most common reason for epilepsy surgery in 
children. LEATs are extremely responsive to surgical treat-
ment, and therefore epilepsy surgery should be considered 
as a treatment option for LEATs. However, the optimal time 
for surgery remains controversial, and surgeries are often 
delayed. In this review, we reviewed published article on the 
factors associated with seizure and cognitive outcomes after 
epilepsy surgery for LEATs in children to help clinicians in 
their decision whether to pursue epilepsy surgery for LEATs. 
The achievement of gross total resection may be the most 
important prognostic factor for seizure freedom. A shorter 
duration of epilepsy, a younger age at surgery, and extended 
resection of temporal lobe tumors have also been suggested as 
favorable prognostic factors in terms of seizure control. Poor 
cognitive function in children with LEATs is associated with a 
longer duration of epilepsy and a younger age at seizure onset.

Keywords: Low-grade epilepsy-associated tumors, Epilepsy 
surgery, Prognosis, Cognition

Introduction

Low-grade epilepsy-associated neuroepithelial tumors (LEATs) 
are responsible for drug-resistant chronic focal epilepsy that pre-
sents with seizure onset during childhood or young adulthood.1) 
LEATs comprise low-grade glial or glioneuronal tumors (GNTs) 
such as gangliogliomas (GGs), dysembryoplastic neuroepithelial 
tumors (DNTs), angiocentric astrocytomas, and isomorphic as-
trocytomas.

After leukemias, brain tumors are the most common tumors 
(20%–22%) in children.2) Brain tumors are graded based on 
their histological appearance and molecular parameters. World 
Health Organization grades 1 and 2 are benign tumors, while 
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grades 3 and 4 are malignant. Before biopsy or surgical resection, 
due to multiple and nonspecific clinical signs, tumor grade is 
mostly assumed based on analysis of tumor site and appearance 
on multiparametric magnetic resonance imaging (MRI).3) For ex-
ample, a hemorrhagic tumor with peripheral edema con taining 
multiple ectatic vessels or a hypercellular tumor that is iso- or 
hypointense compared to the cortex on T2-weighted imaging is 
more suggestive of high-grade tumors.3-5) Seizure prevalence is 
higher in slow-growing benign brain tumors, and some suggest ed 
explanations include: (1) longer life expectancy of patients with 
low-grade tumors contributing to increased seizure frequency; 
(2) insufficient time for cells of high-grade tumors to reorganize, 
vascularize, and develop mechanisms necessary for epileptoge-
nesis; and (3) slow-growing tumor cells may possess intrinsic 
epileptogenic properties.6-8)

As the propensity for malignant progression is very low in 
LEATs, seizure control may be the main treatment target. Unfor-
tunately, there is a high incidence of drug-resistant seizures 
among LEAT patients; consequently, although LEATs account 
for only 2%–5% of all brain tumors and are the etiology of sei-
zures in only 1%–3% of pediatric epilepsy patients, LEATs are 
the second-most common reason for epilepsy surgery in child-
ren.9-12) In a European study of brain specimens from 9,523 
patients who underwent epilepsy surgery, the histopathologic 
etiology was identified as a tumor in 24% of all patients. LEATs 
comprised 82% of the tumors, and 84% of the LEATs were GGs 
or DNTs (Table 1).

LEATs are extremely responsive to surgical treatment, and 
more than 80% of patients achieve seizure freedom after sur-
gery.13-16) Therefore, epilepsy surgery should be considered a 
treatment option for LEATs. However, the optimal surgical tim-
ing remains controversial, and surgeries are often delayed (Table 
1), mostly due to late referral after lengthy trials of antiepileptic 
drugs (AEDs), with a mean duration from seizure onset to 
surgery (i.e., duration of epilepsy) of more than 10 years.10)

To help clinicians decide whether to pursue epilepsy surgery 
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for LEATs, here we performed a systematic literature review of 
the factors associated with seizure and cognitive outcomes after 
epilepsy surgery for LEATs in children. Articles were extracted in 
July 2019 using PubMed searches of titles and abstracts with the 
following query terms: seizure or epilepsy; low-grade epilepsy-
associated neuroepithelial tumor, long-term epilepsy-associated 
tumor, LEAT, ganglioglioma, dysembryoplastic neuroepithelial 
tumor, glioma, astrocytoma, xanthoastrocytoma, or tumor; 
surgery or resection; and child or pediatric. The inclusion crite-
ria for the studies were: (1) epilepsy surgery in children with 
histopathologically confirmed LEATs, (2) seizure or epilepsy as 
the main symptom and reason for the surgery, and (3) mention 
of statistically significant predictive factors for seizure or cog-
nitive outcomes. The exclusion criteria were: (1) inclusion of 
adults and children in the study and the reporting of data such 
that the child-specific data could not be distinguished from 
those for adults, (2) inclusion of high-grade tumors. Of 290 ex-
tracted articles, 86 were excluded after initial screening due to 
irrelevancy, while an additional 186 were excluded after full 
article review due to ineligibility. Ultimately, 18 studies were in-
cluded; of them, 16 addressed factors associated with seizure 
outcome, and 6 addressed factors associated with cognitive out-
come. All included studies were retrospective.

Epileptogenesis of LEATs

The reason why almost all GNTs, including GGs and DNTs, 
cause seizures is not entirely understood, and various epilepto-
genic mechanisms of LEAT-associated epilepsy have been sug-
gested.17) The LEAT itself can be intrinsically epileptogenic due 
to the presence of hyperexcitable dysplastic neurons or a high 
neuronal density within the tumor as evidenced by various re sults 
from immunocytochemical studies, such as the high ex pression 
of glutamate receptor subtypes, downregulation of se veral gam-
ma-aminobutyric acid (GABA) receptors, and deregulation of 
cation-chloride cotransporters.18-22)

LEATs can also invade normal tissues, altering neurotransmit-

ter expression and inflammatory reactions.23) For example, the 
deregulation of glutamate uptake and release by glutamate re-
cep tors on glial cells, which results in increased extracellular 
glutamate concentrations and decreased glial glutamate trans-
porter expressions, has been observed.19,20,24,25) LEATs have also 
been noted to activate the innate and adaptive immune systems. 
26,27) Proinflammatory molecules increase neuronal excitability 
by enhancing extracellular glutamate concentrations and modi-
fying the functions of glutamate and GABA receptors.28) Immune 
system activation also causes upregulation of major histocom-
patibility complex class I molecules in neuronal cells and activates 
the mammalian target of rapamycin pathway.26,27,29)

Adjacent cortical areas can also undergo dysplastic reorganiza-
tion, leading to hyperexcitability.30,31) Studies have shown that 
the afferentiation of adjacent cortical regions can lead to dener-
vation hypersensitivity, modified synchronization of local net-
works, and overexpression of neurotransmitters in adjacent cor-
tical areas.7,23,32)

Other suggested mechanisms for LEAT-related seizures in-
clude blood-brain barrier dysfunction, altered gap junction 
channels in glial cells, alterations in the surrounding neuronal 
network, altered regional metabolism and pH, regional hypoxic 
effects on the surrounding tissue, and an altered vascular supply. 
7,18,33-39) Genetic predispositions for tumor-associated seizures 
have also been studied.7,40) Therefore, the etiology of tumor-in-
duced seizures is multifactorial and extends beyond the physical 
size of the tumor itself.41,42)

Factors associated with seizure outcomes 
after epilepsy surgery for LEATs

The following factors were mentioned at least once among the 
16 studies that addressed seizure outcome as being predictive of 
seizure recurrence after surgery: younger age at seizure onset43); 
older age at surgery44,45); longer duration of epilepsy44,46); great-
er number of AEDs taken at the time of surgery47); presence of 
generalized seizure48); presence of generalized epileptiform dis-
charges (EDs) in an electroencephalogram49); extratemporal or 
parietal location of the tumor45); presence of satellite lesions on 
a MRI scan50); lesionectomy of temporal tumors43); and subtotal 
tumor resection.15,45,46,51-55) The included studies that examined 
seizure outcome are summarized in Table 2, and more detailed 
information regarding the tumor types included, parameters 
for seizure outcome assessment, and factors irrelevant to seizure 
outcome are shown in Supplementary Table 1.

Degree of tumor resection

Gross total resection was the most frequently suggested favor-
able prognostic factor.15,45,46,49-55) Fig. 1 shows an example of 
successful gross total resection of a LEAT (ganglioglioma) in a 
7-year-old boy performed due to uncontrolled seizures after 

Table 1. Histopathological classification of 1,846 low-grade 
epilepsy-associated neuroepithelial tumors obtained from 
patients undergoing epilepsy surgery10)

Tumor diagnosis No. (%)
Age at seizure 

onset (yr)
Duration of 
epilepsy (yr)

GG 986 (53.6) 12.1±10.3 11.4±10.4

DNT 565 (30.6) 14±10.9 12±10.7

Pilocytic astrocytoma 99 (5.4) 14.1±9.9 12.3 ±11.4

PXA 43 (2.3) 17.0±12.4 12.8±12.1

Isomorphic astrocytoma 17 (0.9) 16.0±14.3 11.4±10.5

Gangliocytoma 16 (0.9) 12.0±7.0 17.1±12.4

Angiocentric glioma 12 (0.7) 7.7±4.8 6.9±6.0

Low-grade tumor, not specified 108 (5.9) 14.6±13.2 11.5±10.1

Values are presented as number (%) or mean±standard devaition.
GG, ganglioglioma; DNT, dysembryoplastic neuroepithelial tumor; PXA, 
pleomorphic xanthoastrocytoma.
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he took 3 AEDs for 1.3 years. Several studies that included 
large numbers of patients confirmed that gross total resection 
is among the strongest factors leading to seizure freedom after 
LEAT resection.41,56-58) However, some studies have stated 
otherwise.49,50,59,60) Gross total resection may not be possible if 
the tumor is located adjacent to eloquent areas or other func-
tional cortical areas. Nevertheless, gross total resection should be 
the goal of surgery, and efforts should be made using multimodal 
approaches to maximize the extent of resection.

Duration of epilepsy

Two studies mentioned that a longer duration of epilepsy was 

a poor prognostic factor for seizure outcomes.44,45) The same has 
been demonstrated in previous systematic reviews that examined 
adults or both adults and children.56,57,61) Early seizures may 
promote progressive changes in synaptic plasticity and cerebral 
blood flow, with prolonged epilepsy making surrounding neu-
rons more epileptic; thus, seizure control can become more 
difficult once a period of time has elapsed following seizure 
onset.56,62-65) However, 8 studies found that epilepsy duration is 
not predictive of seizure outcome,15,43,46,49-52,55) while 2 studies 
suggested otherwise. Thus, more studies are needed to draw a 
definitive conclusion.

Table 2. Summary of articles addressing factors associated with seizure outcomes after epilepsy surgery for low-grade epilepsy-
associated neuroepithelial tumors

Study
No. of 

patients
Seizure-free 

rate
Factors associated with poor seizure outcome

Babini et al. (2013)43) 30 86.7% Younger age at seizure onset

Tailored surgery (i.e., extended resection for epileptogenic foci) for temporal lobe tumors

Brahimaj et al. (2014)47) 18 44.4% Greater number of AEDs tried before surgery

Daszkiewicz et al. (2018)44) 52 86.5% Age of >6 yr at surgery

Duration of epilepsy >1 yr

Ehrstedt et al. (2017)51) 25 64.0% Subtotal resection

Faramand et al. (2018)15) 92 80.4% Subtotal resection

Garc a-Fern ndez et al. (2011)52) 21 85.7% Subtotal resection

Khajavi et al. (1995)53) 15 66.7% Subtotal resection

Khajavi et al. (1999)46) 34 73.5% Older age at surgery

Subtotal resection

Ko et al. (2019)54) 58 87.9% Subtotal resection

Minkin et al. (2008)48) 24 83.3% Presence of generalized seizure

Nolan et al. (2004)72) 26 84.6% Subtotal resection

Ogiwara et al. (2010)66) 30 90.0% None

Packer et al. (1994)45) 50 72.0% Parietal location of tumor

Subtotal resection

Duration of epilepsy >1 yr

Ramantani et al. (2014)55) 29 75.9% Subtotal resection

Uliel-Sibony et al. (2011)49) 41 82.9% Presence of generalized EDs in an EEG

Yang et al. (2019)50) 39 66.7% Presence of satellite lesions on an MRI scan

AED, antiepileptic drug; ED, epileptiform discharge; EEG, electroencephalogram; MRI, magnetic resonance imaging.

Fig. 1. Brain magnetic resonance image of a patient with a low-grade epilepsy-associated 
neuroepithelial tumor (ganglioglioma) before (A) and after (B) gross total resection.
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Age at surgery

Two studies found that an older age at surgery is predictive 
for persistent seizures,44,46) whereas 9 studies found no associa-
tion between age at surgery and seizure outcome.15,43,45,47,48,50,52, 

54,55,66) In an Italian nationwide study of epilepsy surgery for 
LEATs that included a total of 282 adults and children, older 
age at surgery was the most significant predictor of persistent 
seizures, with a 4% increase in the probability of an unfavorable 
outcome for every year waited.16) Since previous studies de mon-
strated no significant difference in surgical outcome between 
pediatric and adult patients with LEATs,16,56) the reason for the 
poor prognosis associated with older age at surgery may be the 
duration of epilepsy rather than the patient’s age itself.

Extent of resection

One article suggested that extended resection (i.e., removal 
of the tumor and surrounding epileptogenic zone) is helpful for 
achieving seizure freedom,43) whereas 6 other articles found no 
difference in seizure outcomes between lesionectomy alone and 
extended resection.46,47,49,52,53,66) Thus, the matter of surgical 
strategy remains controversial. The discordance among previ-
ous studies also raises an important question regarding the 
use of additional corticectomy or additional amygdalohippo-
campectomy for temporal lobe tumors.14,16,23,56,60,67-69) Extended 
resections are mainly performed for temporal tumors, while 
there is a lack of reports detailing outcomes for extratemporal 
tumors.43,67,69-71) One indicator that endorses the application 
of extended tailored resection is the presence of adjacent dual 
pathology, such as focal cortical dysplasia or hippocampal scle-
rosis, that can cause seizures after lesionectomy.56) Therefore, 
what can currently be said with confidence is that extended 
resection may be considered, particularly when treating tempo-
ral tumors with evidence of dual pathology.56)

Utilization of intraoperative electrocortico-
graphy

Intraoperative electrocorticography (ECoG) or 2-stage sur-
gery is performed when delineation of the epileptogenic zone 
is needed due to the presence of multifocal epileptogenic foci 
or a tumor location adjacent to functional areas. All 3 studies 
that investigated the association between the utilization of in-
traoperative ECoG and seizure outcome found that it is not 
related to higher rates of seizure freedom.49,66,72) Other large 
reviews reported the same conclusion. However, caution must 
be taken when interpreting these results, as intraoperative ECoG 
is more likely to be used in more difficult cases that in volve 
multifocal epileptogenic foci or tumors located near eloquent 
areas.56,57) Other studies advocate for the utilization of intra-
operative ECoG during tailored surgery.73-76) Therefore, the use 

of intraoperative ECoG is advised when extended resection is 
anticipated.73)

Factors associated with cognitive outcome 
after epilepsy surgery for LEATs

Studies that addressed factors associated with preoperative full-
scale intelligence quotient (FSIQ), longer duration of epilepsy, 
and younger age at seizure onset are universally mentioned as 
poor prognostic factors for preoperative FSIQ.15,16,52,54,55) An ex-
planation of this finding is reduced brain plasticity and a limited 
degree of possible postoperative cognitive gains.77,78) The studies 
addressing cognitive outcome are summarized in Table 3, and 
more detailed information regarding the cognitive parameters is 
shown in Supplementary Table 2.

Postoperative cognitive function has been shown to significant-
ly depend on preoperative cognitive function.15,54,55) García-
Fernández et al.52) reported that none of the various cognitive 
domains of a postoperative neuropsychological test performed 1 
year after resection showed significant decline; on the contrary, 
there were statistically significant improvements in several cog-
nitive domains (Supplementary Table 2). Ramantani et al.55) 
also reported that, at the group level, there was significant intra-
individual improvement in verbal intelligence quotient (IQ) and 
performance IQ as well as a trend toward FSIQ improve ment 
after epilepsy surgery. Finally, a study by Faramand et al.15) showed 
that postoperative FSIQ improved in 61% of children, declined 
in 36.5% of children, and was unchanged in 2.5% of children. 
The study by García-Fernández et al.52) mentioned above also 
showed poorer preoperative cognitive function in children with 
drug-resistant epilepsy, suggesting that it can be beneficial for 
surgery to occur before drug-resistant epilepsy develops.

Overall, earlier surgery can prevent low postoperative FSIQ 
in children, particularly young children, and that improved 
cognitive function can be expected following epilepsy surgery.

Conclusion

LEATs usually develop in children and young adults who pre-
sent with seizures that are highly drug-resistant. Surgical treat-
ment, however, is extremely effective, resulting in seizure free-
dom in approximately 70%–80% of cases. The achievement of 
gross total resection may be the most important prognostic factor 
for seizure freedom. Shorter duration of epilepsy, younger age at 
surgery, and extended resection of temporal lobe tumors have 
also been suggested as favorable prognostic factors for seizure 
control.

Poor cognitive function in children with LEATs is strongly 
associated with longer duration of epilepsy and younger age at 
seizure onset. Therefore, surgical treatment should be consi-
dered as an early option in children with LEATs prior to the 
diagnosis of drug-resistant epilepsy to protect the cognitive 



www.e-cep.org https://doi.org/10.3345/kjp.2019.01151 175

function of LEAT patients by averting recurrent seizures and the 
administration of multiple AEDs.
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Supplementary Table 1. Detailed summary of literatures on factors associated with seizure outcome in epilepsy surgery of low-grade epilepsy-associated neuroepithelial tumors

Study
No. of 

patients
Types of tumor (percent) Parameters for seizure outcome

Factors associated with 
poor seizure outcome

Factors irrelevant to seizure outcome

Babini et al. 
(2013)

30 GG (66.7%), DNT (13.3%), PXA (6.7%), 
Gangliocytoma (3.3%), Angiocentric 
glioma (3.3%), Papillary GNT (3.3%), 
Extraventricular neurocytoma (3.3%)

Good: Engel class I (n=26, 86.7%)
Poor: Engel class II–III (n=4, 13.3%),
at last f/u, f/u duration of mean 7.1 years (range, 1–17 
years) 

Younger age at sz onset
≤4 years at sz onset
Tailored surgery in temporal lobe 
tumors

Age at surgery, duration of epilepsy, secondary 
generalization, sz frequency before surgery, location of 
tumor, side of tumor location

Brahimaj et al. 
(2014)

18 DNT (27.8%), PXA (16.7%), GG (11.1%), 
Desmoplastic GG (11.1%), Low-grade 
glioma (11.1%), Pilocytic astrocytoma 
(11.1%), Oligodendroglioma (5.6%), 
Fibrillary astrocytoma (5.6%)

Good: sz free (n=8, 44.4%)
Poor: persistent sz (n=10, 55.6%),
at last f/u, mean f/u duration of 39 months (minimum, 
6 months) 

Greater number of AEDs tried 
before surgery

Age at sz onset, age at surgery, gender, contralateral ED 
on EEG, extent of resection

Daszkiewicz et 
al. (2018)

52 GG (92.3%), DNT (7.7%) (tumors 
located in mesial-basal part of the 
temporal lobe were included)

Good: Engel class I (n=45, 86.5%)
Poor: Engel class II–III (n=7, 13.5%), 
at last f/u, f/u duration of mean 2.9 years (range, 1–7 
years) 

Age > 6 years at surgery
Duration of epilepsy > 1 year

Extent of tumor, coexistence of cortical dysplasia, surgical 
approach, extent or resection

Ehrstedt et al.a) 
(2017)

25 GG, DNT, Infantile desmoplastic GG 
(proportions unknown)

Good: Engel class I (n=45, 86.5%)
Poor: Engel class II–III (n=7, 13.5%), 
at last f/u, f/u duration of mean 2.9 years (range, 1–7 
years) 

STR Age at sz onset, gender, duration of epilepsy, drug-
resistant epilepsy before surgery, tumor location 

Faramand et al. 
(2017)

92 DNT, GG, Demoplastic GG, Angiocentric 
glioma, GNT not specified (proportions 
unknown)

Good: Engel class I (n=74, 80.4%)
Poor: Engel class II–IV (n=18, 19.6%)
at last f/u, f/u duration of ≥12 months

STR Age at sz onset, age at first assessment, age at surgery, 
gender, duration of epilepsy, secondary generalization, 
tumor location, side of tumor location, tumor type

García-
Fernández et 
al. (2011)

21 GG (47.6%), DNT (42.9%), Gangliocyto-
ma (9.5%)

Good: sz free (n=18, 85.7%)
Poor: persistent sz (n=3, 14.3%), 
at last f/u, f/u duration of mean 4.68 years (SD, 2.13; 
minimum, 1 year) 

STR Age at sz onset, age at surgery, duration of epilepsy, 
tumor location, side of tumor location, type of 
tumor, drug-resistant epilepsy, number of interictal 
epileptogenic foci on EEG, interictal ED on EEG, extent 
of resection

Khajavi et al. 
(1995)

15 GG (100%) Good: sz free or ≥90% sz reduction (n=12, 80.0%)
Poor: <90% sz reduction (n=3, 20.0%),
at last f/u, f/u duration mean 42 months (range, 
18–107 months) 

 STR Extended resection of epileptogenic foci utilizing iEEG

Khajavi et al. 
(1999)

34 GG (44.1%), DNT (20.6%), Low-grade 
astrocytoma (20.6%), Oligodendro-
glioma (11.8%), Mixed glioma (2.9%)

Good: sz free or ≥90% sz reduction (n=29, 85.3%)
Poor: <90% sz reduction (n=5, 14.7%),
at last f/u, f/u duration mean 43 months (range, 
18–126 months) 

Older age at surgery
STR

uration of epilepsy, sz frequency before surgery, tumor 
type, location of tumor,

Ko et al. (2019) 58 GG (46.6%), DNT (48.3%), Pilocytic 
astrocytoma (3.4%), Papillary glioneu-
ronal tumor (1.7%)

Good: sz free (n=51, 87.9%)
Poor: persistent sz (n=7, 12.1%),
at last f/u, f/u duration of median 5.6 years (IQR, 
3.2–10.0; minimum, 2 years) 

Univariate:
-Longer duration of epile psy
-Greater number of AEDs taken 
before surgery

-STR
-Temporal location of tumor
Multivariate:
-STR

Age at seizure onset, gender, f/u duration, sz frequency 
before surgery, sz semiology, drug-resistant epilepsy, 
duration of video EEG monitoring, generalized ED on 
EEG, side of tumor location, iEEG monitoring, tumor 
type, associated FCD

Minkin et al. 
(2008)

24 DNT (100%) Good: Engel class I (n=20, 83.3%)
Poor: Engel class II=III (n=4, 16.7%), 
at last f/u, f/u duration of mean 6.7 years (range, 1–16 
years) 

Presence of generalized sz Age at sz onset, age at surgery, gender, EEG concordancy, 
pathology (simple/complex/nonspecific), malformation 
of cortical development, f/u duration

Nolan et al. 
(2004)

26 DNT (100%) Good: sz free (n=22, 84.6%)
Poor: persistent sz (n=4, 15.4%),
at 12 months after surgery

Duration of epilepsy >2 years
Age at surgery >10 years
STR

Age at sz onset, gender, presence of developmental delay, 
presence of focal neurological deficit, sz semiology, MRI 
appearance of tumor (typical/atypical/enhanced), utiliza-
tion of ECoG, pathologic classification of DNT (simple/
complex/unclassified), presence of cortical dysplasia

Good: sz free (n=16, 61.5%)
Poor: persistent sz (n=10, 38.5%),
at last f/u, f/u duration of mean 4.3 years (SD, 2.5; 
range, 1–11 years) 

STR Age at sz onset, gender, duration of epilepsy, age at 
surgery, presence of developmental delay, presence of 
focal neurological deficit, sz semiology, MRI appearance 
of tumor (typical/atypical/enhanced), utilization of 
ECoG, pathologic classification of DNT (simple/complex/
unclassified), presence 

Ogiwara et al. 
(2010)

30 GG (100%) Good: Engel class 1 (n=27, 90.0%)
Poor: Engel class II (n=3, 10.0%),
at last f/u, f/u duration of mean 3.4 years (range 1 
month – 8.2 years)

None Age at surgery, gender, tumor location, extent of 
resection, utilization of intraoperative ECoG

Packer et al. 
(1994)

60 (≥1 sz 
before 
surgery)

GG (68.3%), Low-grade glioma (18.3%), 
PXA (6.7%), Intermediate-grade 
glioma (3.3%), Mixed low-grade 
glioma (3.3%)

Good: sz free or ≥75% sz reduction (n=47, 78.3%)
Poor: <75% sz reduction (n=13, 21.7%),
at 2 years after surgery 

Parietal location of tumor
STR

Age at surgery, duration of epilepsy. sz semiology, sz 
frequency before surgery, tumor type

50 (≥5 sz 
before 
surgery)

Good: sz free or ≥75% sz reduction (n=38, 76.0%)
Poor: <75% sz reduction (n=12, 24.0%),
at 2 years after surgery

Parietal location of tumor
STR
Duration of epilepsy >1 year

Age at surgery, sz semiology, sz frequency before 
surgery, tumor type

Ramantani et al. 
(2014)

29 GG (55.2%), DNT (44.8%) Good: Engel class I (n=22, 75.9%)
Poor: Engel class II–IV (n=7, 24.1%),
at last f/u, f/u duration of mean 7.3 years (SD, 3.0; 
range, 1.3–12.3 years) 

STR Age at onset, age at surgery, duration of epilepsy, 
generalized sz

Uliel-Sibony et 
al. (2011)

41 Pilocytic astrocytoma (48.8%), GG 
(29.3%), Low-grade oligodendro-
glioma (14.6%), DNT (7.3%) (tumors 
located in temporal lobe were in-
cluded)

Good: Engel class I (n=34, 82.9%)
Poor: Engel class III–IV (n=7, 17.1%), at last f/u, f/u 
duration of mean 5.3 years (range, 1–13 years) 

Presence of generalized ED on 
EEG

Age at seizure onset, duration of epilepsy, semiology, 
tumor type, utilization of ECoG, GTR/STR, extent of 
resection

Yang et al. 
(2019)

39 DNT (100%) Good: sz free (n=26, 66.7%)
Poor: persistent sz (n=13, 33.3%), 
at last f/u, f/u duration of median 92 months (range, 
6–155 months) 

Presence of satellite lesions on 
MRI

Age at seizure onset, gender, duration of epilepsy, 
location of tumor, GTR/STR

GG, ganglioglioma; DNT, dysembryoplastic neuroepithelial tumor; PXA, pleomorphic xanthoastrocytoma; GNT, glioneuronal tumor; f/u, follow-up; sz, seizure; AED, antiepileptic drug; ED, epileptiform discharge; EEG, lectoencephalo-
graphy; STR, subtotal resection; SD, standard deviation; iEEG, invasive subdural electoencephalography; FCD, focal cortical dysplasia; IQR, interquartile range; MRI, magnetic resonance imaging; ECoG, electrocorticography; GTR, 
gross total resection.
See the end-reference list in main text for references of the Supplementary Table 1.
a)Ehrstedt C, Rydell AM, Gabert Hallsten M, Str mberg B, Ahlsten G. Cognition, health-related quality of life, and mood in children and young adults diagnosed with a glioneuronal tumor in childhood. Epilepsy Behav 
2018;83:59-66.
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Supplementary Table 2. Detailed summary of literatures on factors associated with cognitive outcome in epilepsy surgery of low-grade epilepsy-associated neuroepithelial tumors

Study
No. of 

patients
Types of tumor (%) Parameters for cognitive functions

Factors associated with poor 
cognitive outcome

Factors irrelevant to cognitive outcome

Faramand et al.
(2017)

90 DNT, GG, Demoplastic GG, Angiocentric 
glioma, GNT not specified (proportions 
unknown)

Preoperative full-scale IQ Longer duration of epilepsy
Younger age at sz onset

Age at surgery, tumor location

41 Postoperative full-scale IQ, at 1 year after surgery Low preoperative full-scale IQ Age at sz onset, duration of epilepsy, degree of 
resection

García-
Fernández et 
al. (2011)

21 GG (47.6%), DNT (42.9%), Gangliocytoma 
(9.5%)

Preoperative full-scale IQ, performance IQ, motor 
function of dominant hand, motor function of 
non–dominant hand, verbal reasoning, auditory 
processing, vocabulary recognition, visual learning, 
arithmetic

Younger age at sz onest
Drug-resistant epilepsy

Tumor location, side of tumor location

Preoperative verbal IQ, verbal learning Younger age at sz onest
Drug-resistant epilepsy
Left hemispheric tumor

Side of tumor location

Preoperative vasomotor coordination, visuo-
construc tional praxis, spatial memory, concept 
formation

Younger age at sz onset Drug-resistant epilepsy, tumor location, side of 
tumor location

Preoperative delayed verbal recall, reading/under-
standing

Drug-resistant epilepsy
Left hemispheric tumor

Age at sz onset, side of tumor location

Preoperative visual perception, phonemic and 
semantic verbal fluency, sustained attention

Drug-resistant epilepsy Age at sz onset, tumor location, side of tumor 
location

Preoperative visual perception, phonemic and 
semantic verbal fluency, sustained attention

Extratemporal location of tumor Age at sz onset, drug–resistant epilepsy, side of 
tumor location

Postoperative improvement in visual attention, 
auditory processing, verbal comprehension, verbal 
delayed recall, spatial memory, executive function/
nonverbal fluency, at 1 year after surgery

Extended lesionectomy (compared 
to extended resection)

Not mentioned

Giulioni et al.
(2017)

Not 
specified

GG, DNT, PXA, Pilocytic astrocytoma, 
Angiocentric glioma, GNT not specified, 
Low-grade glioma not specified, Mixed 
(proportions unknown)

Preoperative neuropsychological test (normal vs 
pathologic)

Longer duration of epilepsy Not mentioned

Ko et al. (2019) 58 GG (46.6%), DNT (48.3%), Pilocytic astro-
cytoma (3.4%), Papillary glioneuronal 
tumor (1.7%)

Preoperative full-scale IQ Univariate:
-Longer duration of epilepsy
-Greater number of AEDs taken 
before surgery

-STR
-Multilobar involvement of tumor
Multivariate:
-Longer duration of epilepsy

Age at seizure onset, gender, age at surgery, f/
u duration, sz frequency before surgery, sz 
semiology, drug-resistant epilepsy, duration of 
video EEG monitoring, generalized ED on EEG, 
side of tumor location, iEEG monitoring, tumor 
type, associated FCD

42 (proportions unknown) Postoperative full-scale IQ, at median 21.0 months 
(IQR, 13.2–31.0 months) after surgery

Low preoperative full-scale IQ Not mentioned

Ramantani et 
al. (2014)

25 GG, DNT (proportions unknown) Preoperative full-scale IQ Longer duration of epilepsy Age at sz onset, age at surgery, sz frequency 
before surgery, generalized sz

24 Postoperative full-scale IQ Low preoperative full-scale IQ Not mentioned

GG, ganglioglioma; DNT, dysembryoplastic neuroepithelial tumor; IQ, intelligence quotient; sz, seizure; GNT, glioneuronal tumor; PXA, pleomorphic xanthoastrocytoma; ED, epileptiform discharge; iEEG, invasive subdural 
electoencephalography; FCD, focal cortical dysplasia; IQR, interquartile range.
See the end-reference list in main text for references of the Supplementary Table 2.


